Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlinear Systems

A. Torres-Hernandez, F. Brambila-Paz
{"title":"Fractional Newton-Raphson Method and Some Variants for the Solution of Nonlinear Systems","authors":"A. Torres-Hernandez, F. Brambila-Paz","doi":"10.5121/mathsj.2020.7102","DOIUrl":null,"url":null,"abstract":"The following document presents some novel numerical methods valid for one and several variables, which using the fractional derivative, allow to find solutions for some non-linear systems in the complex space using real initial conditions. The origin of these methods is the fractional Newton-Raphson method but unlike the latter, the orders of fractional derivatives proposed here are functions. In the first method, a function is used to guarantee an order of convergence (at least) quadratic, and in the others, a function is used to avoid the discontinuity that is generated when the fractional derivative of the constants is used, and with this, it is possible that the methods have at most an order of convergence (at least) linear.","PeriodicalId":276601,"journal":{"name":"Applied Mathematics and Sciences An International Journal (MathSJ)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Sciences An International Journal (MathSJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mathsj.2020.7102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The following document presents some novel numerical methods valid for one and several variables, which using the fractional derivative, allow to find solutions for some non-linear systems in the complex space using real initial conditions. The origin of these methods is the fractional Newton-Raphson method but unlike the latter, the orders of fractional derivatives proposed here are functions. In the first method, a function is used to guarantee an order of convergence (at least) quadratic, and in the others, a function is used to avoid the discontinuity that is generated when the fractional derivative of the constants is used, and with this, it is possible that the methods have at most an order of convergence (at least) linear.
非线性系统解的分数阶Newton-Raphson方法及其变体
本文提出了一些新的单变量和多变量数值方法,利用分数阶导数,利用实初始条件求复空间中某些非线性系统的解。这些方法的起源是分数牛顿-拉夫森方法,但与后者不同的是,这里提出的分数阶导数是函数。在第一种方法中,使用一个函数来保证收敛阶数(至少)是二次的,而在另一种方法中,使用一个函数来避免当使用常数的分数阶导数时产生的不连续,因此,有可能这些方法最多有一个收敛阶数(至少)是线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信