Validation of applying the maximum likelihood duty cycle forecast for residential load aggregation

S. Srinivasan, A. Chandrasekaran, A. Alouani
{"title":"Validation of applying the maximum likelihood duty cycle forecast for residential load aggregation","authors":"S. Srinivasan, A. Chandrasekaran, A. Alouani","doi":"10.1109/SSST.1993.522754","DOIUrl":null,"url":null,"abstract":"The prediction of single house space heating load by the maximum likelihood duty cycle concept is extended to the next level of a group of houses supplied by a distribution feeder. Data collected in the Athens Load Control Experiment are used for validating the prediction. The random parameter is identified for each house in a group using the average day data in December 1986. The parameter is then applied for predicting the space heating load on a day in January 1987. The aim is to determine the effectiveness of the new stochastic appliance model for aggregating the space heating load of a group of houses.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The prediction of single house space heating load by the maximum likelihood duty cycle concept is extended to the next level of a group of houses supplied by a distribution feeder. Data collected in the Athens Load Control Experiment are used for validating the prediction. The random parameter is identified for each house in a group using the average day data in December 1986. The parameter is then applied for predicting the space heating load on a day in January 1987. The aim is to determine the effectiveness of the new stochastic appliance model for aggregating the space heating load of a group of houses.
住宅负荷聚集的最大似然占空比预测应用验证
利用最大似然占空比概念对单个住宅空间热负荷的预测被扩展到由配电馈线提供的一组住宅的下一个级别。在雅典负荷控制实验中收集的数据用于验证预测。随机参数是根据1986年12月的平均日数据确定的。然后应用该参数预测1987年1月某日的空间热负荷。目的是确定新的随机器具模型的有效性,以聚集一组房屋的空间热负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信