Advanced Analysis Using Deep Learning Method

Mina Lim, Sooyeon Lim, Soohyung Park, Hong-Kyu Kim
{"title":"Advanced Analysis Using Deep Learning Method","authors":"Mina Lim, Sooyeon Lim, Soohyung Park, Hong-Kyu Kim","doi":"10.3938/phit.32.020","DOIUrl":null,"url":null,"abstract":"X-ray Photoelectron Spectroscopy (XPS) is an important analytical method utilized to determine not only the electronic structure of a material, but also the elemental content of the material. However, it requires a high level of expertise to interpret XPS data, and the reliability of XPS analysis depends on the competence of the expert. To overcome these challenges, this article introduces the process of developing a deep learning model that can automatically interpret XPS data without human intervention. Furthermore, by understanding how a deep learning model can quantify elemental content in a spectrum, we provide insights into XPS analysis methods and the interpretation of the spectrum itself.","PeriodicalId":365688,"journal":{"name":"Physics and High Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and High Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3938/phit.32.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray Photoelectron Spectroscopy (XPS) is an important analytical method utilized to determine not only the electronic structure of a material, but also the elemental content of the material. However, it requires a high level of expertise to interpret XPS data, and the reliability of XPS analysis depends on the competence of the expert. To overcome these challenges, this article introduces the process of developing a deep learning model that can automatically interpret XPS data without human intervention. Furthermore, by understanding how a deep learning model can quantify elemental content in a spectrum, we provide insights into XPS analysis methods and the interpretation of the spectrum itself.
使用深度学习方法的高级分析
x射线光电子能谱(XPS)是一种重要的分析方法,不仅用于确定材料的电子结构,而且用于确定材料的元素含量。然而,它需要高水平的专业知识来解释XPS数据,XPS分析的可靠性取决于专家的能力。为了克服这些挑战,本文介绍了开发一个深度学习模型的过程,该模型可以在没有人为干预的情况下自动解释XPS数据。此外,通过了解深度学习模型如何量化光谱中的元素含量,我们为XPS分析方法和光谱本身的解释提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信