ON THE CONVERGENCE OF NUMERICAL SCHEMES FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

Siddhartha Mishra
{"title":"ON THE CONVERGENCE OF NUMERICAL SCHEMES FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS","authors":"Siddhartha Mishra","doi":"10.1142/9789813272880_0195","DOIUrl":null,"url":null,"abstract":"A large variety of efficient numerical methods, of the finite volume, finite difference and DG type, have been developed for approximating hyperbolic systems of conservation laws. However, very few rigorous convergence results for these methods are available. We survey the state of the art on this crucial question of numerical analysis by summarizing classical results of convergence to entropy solutions for scalar conservation laws. Very recent results on convergence of ensemble Monte Carlo methods to the measure-valued and statistical solutions of multi-dimensional systems of conservation laws are also presented.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A large variety of efficient numerical methods, of the finite volume, finite difference and DG type, have been developed for approximating hyperbolic systems of conservation laws. However, very few rigorous convergence results for these methods are available. We survey the state of the art on this crucial question of numerical analysis by summarizing classical results of convergence to entropy solutions for scalar conservation laws. Very recent results on convergence of ensemble Monte Carlo methods to the measure-valued and statistical solutions of multi-dimensional systems of conservation laws are also presented.
守恒双曲型系统数值格式的收敛性
为了逼近具有守恒定律的双曲型系统,已经发展了大量的有限体积、有限差分和DG型的有效数值方法。然而,这些方法很少有严格的收敛结果。我们通过总结标量守恒律的熵解收敛的经典结果来概述数值分析中这一关键问题的最新进展。本文还介绍了集合蒙特卡罗方法收敛于具有守恒律的多维系统的测度值解和统计解的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信