A Multilevel-Modular 10 kV Silicon Carbide MOSFET Module using Custom High-Voltage Isolated Gate Driver, Coupling, and Snubber Circuits

A. N. M. Wasekul Azad, Sourov Roy, Faisal Khan, A. Caruso
{"title":"A Multilevel-Modular 10 kV Silicon Carbide MOSFET Module using Custom High-Voltage Isolated Gate Driver, Coupling, and Snubber Circuits","authors":"A. N. M. Wasekul Azad, Sourov Roy, Faisal Khan, A. Caruso","doi":"10.1109/KPEC51835.2021.9446200","DOIUrl":null,"url":null,"abstract":"This paper presents a multilevel-modular high voltage (HV) switch architecture comprised of series-connected SiC MOSFETs and a voltage balancing method that achieves <1.1% voltage mismatch under steady-state and switching modes. An individual module consists of four series-connected 1.7-kV rated SiC MOSFETs, yielding a breakdown voltage of 6.8-kV, and driven by a single custom 10-kV isolated gate driver. One gate driver per module and 46 passive components (e.g., coupling capacitors, resistors, etc.) per module lead to low-cost fabrication and simpler operation of this HV switch. The unique modularity feature of the proposed switch enables voltage scalability to the limit of the weakest passive link. Any single or a combination of multiple passive components (e.g., capacitors, diodes, resistors, etc.) can form the weakest passive link in a module. Further, the high volumetric power density realized by the physical layout and modular stacking is within 80% of a fully custom/integral design. The working principle of the HV switch during switching transients and steady-state are demonstrated and compared in simulation and from measurements. Simulation and experimental results demonstrate excellent voltage balancing as supported by a minimal voltage imbalance of <80-V among the individual MOSFETs in the HV switch at a supply voltage of 6-kV and a switching frequency of 15-kHz.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KPEC51835.2021.9446200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a multilevel-modular high voltage (HV) switch architecture comprised of series-connected SiC MOSFETs and a voltage balancing method that achieves <1.1% voltage mismatch under steady-state and switching modes. An individual module consists of four series-connected 1.7-kV rated SiC MOSFETs, yielding a breakdown voltage of 6.8-kV, and driven by a single custom 10-kV isolated gate driver. One gate driver per module and 46 passive components (e.g., coupling capacitors, resistors, etc.) per module lead to low-cost fabrication and simpler operation of this HV switch. The unique modularity feature of the proposed switch enables voltage scalability to the limit of the weakest passive link. Any single or a combination of multiple passive components (e.g., capacitors, diodes, resistors, etc.) can form the weakest passive link in a module. Further, the high volumetric power density realized by the physical layout and modular stacking is within 80% of a fully custom/integral design. The working principle of the HV switch during switching transients and steady-state are demonstrated and compared in simulation and from measurements. Simulation and experimental results demonstrate excellent voltage balancing as supported by a minimal voltage imbalance of <80-V among the individual MOSFETs in the HV switch at a supply voltage of 6-kV and a switching frequency of 15-kHz.
一个多电平模块化10千伏碳化硅MOSFET模块,使用定制的高压隔离栅驱动,耦合和缓冲电路
本文提出了一种多电平模块化高压(HV)开关架构,该架构由串联的SiC mosfet和电压平衡方法组成,在稳态和开关模式下实现<1.1%的电压失配。单个模块由四个串联连接的1.7 kv额定SiC mosfet组成,击穿电压为6.8 kv,并由单个定制的10 kv隔离栅驱动器驱动。每个模块一个栅极驱动器和每个模块46个无源元件(例如,耦合电容器,电阻等)导致这种高压开关的制造成本低,操作更简单。该交换机独特的模块化特性使电压可扩展性达到最弱无源链路的极限。任何单个或多个无源元件(如电容器、二极管、电阻器等)的组合都可能构成模块中最弱的无源链路。此外,通过物理布局和模块化堆叠实现的高体积功率密度在完全定制/集成设计的80%以内。通过仿真和实测,论证了高压开关在切换瞬态和稳态时的工作原理,并进行了比较。仿真和实验结果表明,当电源电压为6 kv,开关频率为15 khz时,高压开关中各个mosfet之间的电压不平衡小于80 v,从而实现了良好的电压平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信