Comparison of Finite Difference Schemes for Fluid Flow in Unsaturated Porous Medium (Soil)

R. Timsina, K. N. Uprety
{"title":"Comparison of Finite Difference Schemes for Fluid Flow in Unsaturated Porous Medium (Soil)","authors":"R. Timsina, K. N. Uprety","doi":"10.3126/nmsr.v39i1.46915","DOIUrl":null,"url":null,"abstract":"Water movement in an unsaturated porous medium (soil) can be expressed by Richards equation with the mass conservation law and Darcy-Buckingham's law. This equation can be expressed in three different forms as pressure head-based, moisture content based and mixed from. In this study, we solve one dimensional Richards Equation in mixed form numerically using finite difference method with various time-stepping schemes: Forward Euler, Backward Euler, Crank-Nicolson and a Stabilized Runge-Kutta-Legendre Super Time-Stepping and we compare their performances using Dirichlet boundary condition on an isotropic homogeneous vertical soil column.","PeriodicalId":165940,"journal":{"name":"The Nepali Mathematical Sciences Report","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Nepali Mathematical Sciences Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/nmsr.v39i1.46915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water movement in an unsaturated porous medium (soil) can be expressed by Richards equation with the mass conservation law and Darcy-Buckingham's law. This equation can be expressed in three different forms as pressure head-based, moisture content based and mixed from. In this study, we solve one dimensional Richards Equation in mixed form numerically using finite difference method with various time-stepping schemes: Forward Euler, Backward Euler, Crank-Nicolson and a Stabilized Runge-Kutta-Legendre Super Time-Stepping and we compare their performances using Dirichlet boundary condition on an isotropic homogeneous vertical soil column.
非饱和多孔介质(土)中流体流动的有限差分格式比较
水在非饱和多孔介质(土)中的运动可以用理查兹方程、质量守恒定律和达西-白金汉定律来表示。该方程可以以三种不同的形式表示:基于压头的、基于含水率的和混合的。本文采用有限差分方法,采用正演欧拉、后向欧拉、Crank-Nicolson和稳定的龙格-库塔-勒让德超级时间步进方案,对一维混合形式的理查兹方程进行了数值求解,并利用Dirichlet边界条件在各向同性垂直土柱上比较了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信