About the analysis of time series with temporal association rule mining

Tim Schlüter, Stefan Conrad
{"title":"About the analysis of time series with temporal association rule mining","authors":"Tim Schlüter, Stefan Conrad","doi":"10.1109/CIDM.2011.5949303","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of analyzing time series with temporal association rule mining techniques. Since originally association rule mining was developed for the analysis of transactional data, as it occurs for instance in market basket analysis, algorithms and time series have to be adapted in order to apply these techniques gainfully to the analysis of time series in general. Continuous time series of different origins can be discretized in order to mine several temporal association rules, what reveals interesting coherences in one and between pairs of time series. Depending on the domain, the knowledge about these coherences can be used for several purposes, e.g. for the prediction of future values of time series. We present a short review on different standard and temporal association rule mining approaches and on approaches that apply association rule mining to time series analysis. In addition to that, we explain in detail how some of the most interesting kinds of temporal association rules can be mined from continuous time series and present an prototype implementation. We demonstrate and evaluate our implementation on two large datasets containing river level measurement and stock data.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper addresses the issue of analyzing time series with temporal association rule mining techniques. Since originally association rule mining was developed for the analysis of transactional data, as it occurs for instance in market basket analysis, algorithms and time series have to be adapted in order to apply these techniques gainfully to the analysis of time series in general. Continuous time series of different origins can be discretized in order to mine several temporal association rules, what reveals interesting coherences in one and between pairs of time series. Depending on the domain, the knowledge about these coherences can be used for several purposes, e.g. for the prediction of future values of time series. We present a short review on different standard and temporal association rule mining approaches and on approaches that apply association rule mining to time series analysis. In addition to that, we explain in detail how some of the most interesting kinds of temporal association rules can be mined from continuous time series and present an prototype implementation. We demonstrate and evaluate our implementation on two large datasets containing river level measurement and stock data.
关于时间序列分析的时间关联规则挖掘
本文讨论了用时序关联规则挖掘技术分析时间序列的问题。由于最初的关联规则挖掘是为分析事务数据而开发的,例如它发生在市场购物篮分析中,因此必须调整算法和时间序列,以便将这些技术有效地应用于一般的时间序列分析。不同起源的连续时间序列可以离散化,从而挖掘出若干时间关联规则,这些规则揭示了时间序列对之间的有趣的一致性。根据不同的领域,关于这些相干性的知识可以用于多种目的,例如用于预测时间序列的未来值。我们简要回顾了不同的标准和时态关联规则挖掘方法,以及将关联规则挖掘应用于时间序列分析的方法。除此之外,我们还详细解释了如何从连续时间序列中挖掘一些最有趣的时间关联规则,并给出了一个原型实现。我们在两个包含水位测量和库存数据的大型数据集上演示并评估了我们的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信