Data quality inference

R. K. Pon, A. F. Cardenas
{"title":"Data quality inference","authors":"R. K. Pon, A. F. Cardenas","doi":"10.1145/1077501.1077519","DOIUrl":null,"url":null,"abstract":"In the field of sensor networks, data integration and collaboration, and intelligence gathering efforts, information on the quality of data sources are important but are often not available. We describe a technique to rank data sources by observing and comparing their behavior (i.e., the data produced by data sources) to rank. Intuitively, our measure characterizes data sources that agree with accurate or high-quality data sources as likely accurate. Furthermore, our measure includes a temporal component that takes into account a data source's past accuracy in evaluating its current accuracy. Initial experimental results based on simulation data to support our hypothesis demonstrate high precision and recall on identifying the most accurate data sources.","PeriodicalId":306187,"journal":{"name":"Information Quality in Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Quality in Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077501.1077519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In the field of sensor networks, data integration and collaboration, and intelligence gathering efforts, information on the quality of data sources are important but are often not available. We describe a technique to rank data sources by observing and comparing their behavior (i.e., the data produced by data sources) to rank. Intuitively, our measure characterizes data sources that agree with accurate or high-quality data sources as likely accurate. Furthermore, our measure includes a temporal component that takes into account a data source's past accuracy in evaluating its current accuracy. Initial experimental results based on simulation data to support our hypothesis demonstrate high precision and recall on identifying the most accurate data sources.
数据质量推断
在传感器网络、数据集成和协作以及情报收集工作领域,有关数据源质量的信息很重要,但往往无法获得。我们描述了一种通过观察和比较数据源的行为(即数据源产生的数据)来对数据源进行排序的技术。直观地说,我们的测量将与准确或高质量数据源一致的数据源表征为可能准确的数据源。此外,我们的测量还包括一个时间组件,该组件在评估数据源的当前准确性时考虑了数据源过去的准确性。基于模拟数据的初步实验结果支持我们的假设,表明在识别最准确的数据源方面具有较高的精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信