Nonlinear echo cancellation using a partial adaptive time delay neural network

A. N. Birkett, R. Goubran
{"title":"Nonlinear echo cancellation using a partial adaptive time delay neural network","authors":"A. N. Birkett, R. Goubran","doi":"10.1109/NNSP.1995.514919","DOIUrl":null,"url":null,"abstract":"System identification of a nonlinear loudspeaker/microphone acoustic system is necessary to achieve high acoustic echo cancellation in the handsfree telephony environments where the loudspeaker often operates at high volumes. In this paper, a partial adaptive process consisting of a small order tapped delay line neural network (TDNN) followed by a delayed normalized least mean squares (NLMS) adaptive filter is used to model a loudspeaker/microphone acoustic system. The TDNN models the first part of the acoustic impulse response (AIR) where most of the energy is contained and the delayed NLMS filter models the remaining echo. Experimental measurements confirm that a short length TDNN is capable of improved identification in an undermodelled system and that by extending this to the partial adaptive TDNN structure, the ERLE performance improves by 5.5 dB at high loudspeaker volumes when compared to a NLMS structure.","PeriodicalId":403144,"journal":{"name":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1995.514919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

System identification of a nonlinear loudspeaker/microphone acoustic system is necessary to achieve high acoustic echo cancellation in the handsfree telephony environments where the loudspeaker often operates at high volumes. In this paper, a partial adaptive process consisting of a small order tapped delay line neural network (TDNN) followed by a delayed normalized least mean squares (NLMS) adaptive filter is used to model a loudspeaker/microphone acoustic system. The TDNN models the first part of the acoustic impulse response (AIR) where most of the energy is contained and the delayed NLMS filter models the remaining echo. Experimental measurements confirm that a short length TDNN is capable of improved identification in an undermodelled system and that by extending this to the partial adaptive TDNN structure, the ERLE performance improves by 5.5 dB at high loudspeaker volumes when compared to a NLMS structure.
基于部分自适应时滞神经网络的非线性回波消除
非线性扬声器/传声器声学系统的系统识别是实现免提电话环境中高音量扬声器回声消除的必要条件。本文采用一种由小阶抽头延迟线神经网络(TDNN)和延迟归一化最小均方(NLMS)自适应滤波器组成的部分自适应过程对扬声器/麦克风声学系统进行建模。TDNN对包含大部分能量的声脉冲响应(AIR)的第一部分进行建模,延迟NLMS滤波器对剩余的回波进行建模。实验测量证实,短长度TDNN能够改善在未建模系统中的识别,并且通过将其扩展到部分自适应TDNN结构,与NLMS结构相比,在高扬声器音量下,ERLE性能提高了5.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信