Particle swarm optimisation by adding Gaussian disturbance item guided by hybrid narrow centre

Hui Sun, Z. Deng, Jia Zhao, Haihua Xie
{"title":"Particle swarm optimisation by adding Gaussian disturbance item guided by hybrid narrow centre","authors":"Hui Sun, Z. Deng, Jia Zhao, Haihua Xie","doi":"10.1504/ijcsm.2020.10029258","DOIUrl":null,"url":null,"abstract":"This study proposed the optimised PSO algorithm after the addition of Gaussian disturbance guided by hybrid narrow centre. By combining narrow centre and improved narrow centre particles, the hybrid narrow centre can be constructed. In the updating formula of particle velocity, Gaussian disturbance item controlled by hybrid narrow centre is used for replacing self-cognition item. Owing to the guidance of hybrid narrow centre, the convergence is accelerated, while the introduction of Gaussian disturbance can prevent the particles from falling into local optimum. The combination of hybrid narrow centre and Gaussian disturbance can effectively avoid premature convergence and greatly increase convergence rate.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10029258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study proposed the optimised PSO algorithm after the addition of Gaussian disturbance guided by hybrid narrow centre. By combining narrow centre and improved narrow centre particles, the hybrid narrow centre can be constructed. In the updating formula of particle velocity, Gaussian disturbance item controlled by hybrid narrow centre is used for replacing self-cognition item. Owing to the guidance of hybrid narrow centre, the convergence is accelerated, while the introduction of Gaussian disturbance can prevent the particles from falling into local optimum. The combination of hybrid narrow centre and Gaussian disturbance can effectively avoid premature convergence and greatly increase convergence rate.
混合窄中心引导下加高斯扰动项的粒子群优化
提出了混合窄中心引导下加入高斯扰动后的优化粒子群算法。将窄中心粒子与改进的窄中心粒子相结合,可以构建混合型窄中心粒子。在粒子速度更新公式中,采用混合窄中心控制的高斯扰动项代替自认知项。由于混合窄中心的引导,加速了收敛,而高斯扰动的引入可以防止粒子陷入局部最优。混合窄中心和高斯扰动的结合可以有效地避免过早收敛,大大提高收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信