{"title":"Universal Lower Bounds for Laplacians on Weighted Graphs","authors":"D. Lenz, P. Stollmann","doi":"10.1017/9781108615259.009","DOIUrl":null,"url":null,"abstract":"We discuss optimal lower bounds for eigenvalues of Laplacians on weighted graphs. These bounds are formulated in terms of the geometry and, more specifically, the inradius of subsets of the graph. In particular, we study the first non-zero eigenvalue in the finite volume case and the first eigenvalue of the Dirichlet Laplacian on subsets that satisfy natural geometric conditions.","PeriodicalId":393578,"journal":{"name":"Analysis and Geometry on Graphs and Manifolds","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry on Graphs and Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108615259.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We discuss optimal lower bounds for eigenvalues of Laplacians on weighted graphs. These bounds are formulated in terms of the geometry and, more specifically, the inradius of subsets of the graph. In particular, we study the first non-zero eigenvalue in the finite volume case and the first eigenvalue of the Dirichlet Laplacian on subsets that satisfy natural geometric conditions.