Efficient Distance-based Global Sensitivity Analysis for Terrestrial Ecosystem Modeling

D. Lu, D. Ricciuto
{"title":"Efficient Distance-based Global Sensitivity Analysis for Terrestrial Ecosystem Modeling","authors":"D. Lu, D. Ricciuto","doi":"10.1109/ICDMW51313.2020.00052","DOIUrl":null,"url":null,"abstract":"Sensitivity analysis in terrestrial ecosystem modeling is important for understanding controlling processes, guiding model development, and targeting new observations to reduce parameter and prediction uncertainty. Complex and computationally expensive terrestrial ecosystem models (TEM) limit the number of ensemble simulations, requiring sophisticated and efficient methods to analyze sensitivities of multiple model responses to different types of parameter uncertainties. In this study, we propose a distance-based global sensitivity analysis (DGSA) method. DGSA first classifies model response samples into a small set of discrete classes and then calculates the distance between parameter frequency distributions in different classes to measure the parameter sensitivity. The principle is that, if the parameter distribution is the same in each class, then the model response is insensitive to the parameter, while a large difference in the distributions indicates the parameter is influential to the response. Built on this idea, DGSA can be applied to analyze sensitivity of a single and a group of responses to different kinds of parameter uncertainties including continuous, discrete and even stochastic. Besides the main-effect sensitivity from a single parameter, DGSA can also quantify the sensitivity from parameter interactions. Additionally, DGSA is computationally efficient which can use a small number of model evaluations to obtain an accurate and statistically significant result. We applied DGSA to two TEMs, one having eight parameters and three kinds of model responses, and the other having 47 parameters and a long-period response. We demonstrated that DGSA can be used for sensitivity problems with multiple responses and high-dimensional parameters efficiently.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sensitivity analysis in terrestrial ecosystem modeling is important for understanding controlling processes, guiding model development, and targeting new observations to reduce parameter and prediction uncertainty. Complex and computationally expensive terrestrial ecosystem models (TEM) limit the number of ensemble simulations, requiring sophisticated and efficient methods to analyze sensitivities of multiple model responses to different types of parameter uncertainties. In this study, we propose a distance-based global sensitivity analysis (DGSA) method. DGSA first classifies model response samples into a small set of discrete classes and then calculates the distance between parameter frequency distributions in different classes to measure the parameter sensitivity. The principle is that, if the parameter distribution is the same in each class, then the model response is insensitive to the parameter, while a large difference in the distributions indicates the parameter is influential to the response. Built on this idea, DGSA can be applied to analyze sensitivity of a single and a group of responses to different kinds of parameter uncertainties including continuous, discrete and even stochastic. Besides the main-effect sensitivity from a single parameter, DGSA can also quantify the sensitivity from parameter interactions. Additionally, DGSA is computationally efficient which can use a small number of model evaluations to obtain an accurate and statistically significant result. We applied DGSA to two TEMs, one having eight parameters and three kinds of model responses, and the other having 47 parameters and a long-period response. We demonstrated that DGSA can be used for sensitivity problems with multiple responses and high-dimensional parameters efficiently.
基于距离的陆地生态系统模拟全球敏感性分析
陆地生态系统建模中的敏感性分析对于理解控制过程、指导模型开发、瞄准新的观测值以减少参数和预测的不确定性具有重要意义。复杂且计算成本高的陆地生态系统模型(TEM)限制了集合模拟的数量,需要复杂而有效的方法来分析多种模式响应对不同类型参数不确定性的敏感性。在这项研究中,我们提出了一种基于距离的全局敏感性分析(DGSA)方法。DGSA首先将模型响应样本划分为一个小的离散类集合,然后计算不同类中参数频率分布之间的距离来衡量参数的灵敏度。其原理是,如果每一类中参数分布相同,则模型响应对参数不敏感,而分布差异大则表明参数对响应有影响。基于这一思想,DGSA可以应用于分析单个和一组响应对不同类型参数不确定性的灵敏度,包括连续的、离散的甚至是随机的。除了单个参数的主效应灵敏度外,DGSA还可以量化参数相互作用的灵敏度。此外,DGSA计算效率高,可以使用少量模型评估获得准确且具有统计意义的结果。我们将DGSA应用于两个tem,其中一个具有8个参数和3种模型响应,另一个具有47个参数和长周期响应。我们证明了DGSA可以有效地用于具有多响应和高维参数的灵敏度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信