DYNAMIC MODE DECOMPOSITION OF PIV MEASUREMENTS FOR CYLINDER WAKE FLOW IN TURBULENT REGIME

L. Cordier, G. Tissot, N. Benard, B. R. Noack
{"title":"DYNAMIC MODE DECOMPOSITION OF PIV MEASUREMENTS FOR CYLINDER WAKE FLOW IN TURBULENT REGIME","authors":"L. Cordier, G. Tissot, N. Benard, B. R. Noack","doi":"10.1615/tsfp8.2010","DOIUrl":null,"url":null,"abstract":"Dynamic Mode Decomposition (DMD) is a new post-processing technique that can extract from snapshots dynamic informations relevant for the flow. Without explicit knowledge of the dynamical operator, the DMD algorithm determines eigenvalues and eigenvectors of an approximate linear model. DMD can be viewed as a non linear generalization of global stability classically used for a linearized system. This algorithm can be used to determine the eigen-elements of the Koopman operator, an infinite dimensional linear operator associated with the nonlinear system. The ability of DMD to extract dynamically relevant features of the flow has been tested on an experimental PIV dataset of a turbulent cylinder wake flow.","PeriodicalId":206337,"journal":{"name":"Proceeding of Eighth International Symposium on Turbulence and Shear Flow Phenomena","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Eighth International Symposium on Turbulence and Shear Flow Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tsfp8.2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Dynamic Mode Decomposition (DMD) is a new post-processing technique that can extract from snapshots dynamic informations relevant for the flow. Without explicit knowledge of the dynamical operator, the DMD algorithm determines eigenvalues and eigenvectors of an approximate linear model. DMD can be viewed as a non linear generalization of global stability classically used for a linearized system. This algorithm can be used to determine the eigen-elements of the Koopman operator, an infinite dimensional linear operator associated with the nonlinear system. The ability of DMD to extract dynamically relevant features of the flow has been tested on an experimental PIV dataset of a turbulent cylinder wake flow.
湍流状态下圆柱尾流piv测量的动态模态分解
动态模式分解(DMD)是一种新的后处理技术,可以从快照中提取与流相关的动态信息。在不知道动力学算子的情况下,DMD算法确定近似线性模型的特征值和特征向量。DMD可以看作是线性化系统全局稳定性的非线性推广。该算法可用于确定库普曼算子的特征元素,库普曼算子是与非线性系统相关的无限维线性算子。在湍流圆柱尾流的PIV实验数据集上测试了DMD提取流动动态相关特征的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信