Brief Announcement: How Large is your Graph?

Varun Kanade, Frederik Mallmann-Trenn, Victor Verdugo
{"title":"Brief Announcement: How Large is your Graph?","authors":"Varun Kanade, Frederik Mallmann-Trenn, Victor Verdugo","doi":"10.1145/3087801.3087855","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the graph size, where one is given only local access to the graph. We formally define a query model in which one starts with a seed node and is allowed to make queries about neighbours of nodes that have already been seen. In the case of undirected graphs, an estimator of Katzir et al. (2014) based on a sample from the stationary distribution π uses O(1/(||π||2) + davg) queries; we prove that this is tight. In addition, we establish this as a lower bound even when the algorithm is allowed to crawl the graph arbitrarily; the results of Katzir et al. give an upper bound that is worse by a multiplicative factor tmix · log (n).","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of estimating the graph size, where one is given only local access to the graph. We formally define a query model in which one starts with a seed node and is allowed to make queries about neighbours of nodes that have already been seen. In the case of undirected graphs, an estimator of Katzir et al. (2014) based on a sample from the stationary distribution π uses O(1/(||π||2) + davg) queries; we prove that this is tight. In addition, we establish this as a lower bound even when the algorithm is allowed to crawl the graph arbitrarily; the results of Katzir et al. give an upper bound that is worse by a multiplicative factor tmix · log (n).
简短公告:你的图表有多大?
我们考虑的问题是估计图的大小,其中一个只给局部访问的图。我们正式定义了一个查询模型,其中从一个种子节点开始,并允许对已经看到的节点的邻居进行查询。在无向图的情况下,Katzir等(2014)基于平稳分布π的样本的估计器使用O(1/(||π||2) + davg)查询;我们证明它是紧的。此外,我们建立了一个下界,即使算法允许任意抓取图;Katzir等人的结果给出了一个上界,它比乘因子tmix·log (n)差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信