Using Convolutional Neural Network for Vibration Fault Diagnosis Monitoring in Machinery

C. W. Yeh, Rongshun Chen
{"title":"Using Convolutional Neural Network for Vibration Fault Diagnosis Monitoring in Machinery","authors":"C. W. Yeh, Rongshun Chen","doi":"10.1109/AMCON.2018.8614967","DOIUrl":null,"url":null,"abstract":"This work proposes an intelligent bearing fault diagnosis system using Convolutional Neural Network (CNN) in deep learning to achieve the abnormal identification of bearing vibration. In this system, the convolutional kernel in CNN can automatically extract the features of input signals and no human feature extraction and other data pre-processing are required. As a result, comparing to the traditional signal processing methods, this work has the advantages of automated end-to-end, high-accuracy and intelligent machine troubleshooting in vibration fault diagnosis of bearings.","PeriodicalId":438307,"journal":{"name":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Advanced Manufacturing (ICAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMCON.2018.8614967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work proposes an intelligent bearing fault diagnosis system using Convolutional Neural Network (CNN) in deep learning to achieve the abnormal identification of bearing vibration. In this system, the convolutional kernel in CNN can automatically extract the features of input signals and no human feature extraction and other data pre-processing are required. As a result, comparing to the traditional signal processing methods, this work has the advantages of automated end-to-end, high-accuracy and intelligent machine troubleshooting in vibration fault diagnosis of bearings.
卷积神经网络在机械振动故障诊断监测中的应用
本文提出了一种利用深度学习中的卷积神经网络(CNN)实现轴承振动异常识别的智能轴承故障诊断系统。在该系统中,CNN中的卷积核可以自动提取输入信号的特征,不需要人工进行特征提取和其他数据预处理。因此,与传统的信号处理方法相比,本工作在轴承振动故障诊断中具有端到端自动化、高精度、智能机故障排除的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信