{"title":"Single-Switch Differential Power Processing PWM Converter to Enhance Energy Yield of Photovoltaic Panels under Partial Shading","authors":"M. Uno, Toru Nakane, Toshiki Shinohara","doi":"10.5772/INTECHOPEN.74307","DOIUrl":null,"url":null,"abstract":"the chapter Abstract The partial shading on a photovoltaic (PV) panel consisting of multiple substrings poses serious issues of decreased energy yield and occurrence of multiple maximum power points (MPPs). Although various kinds of differential power processing (DPP) converters have been proposed to prevent the partial shading issues, multiple switches and/or magnetic components in proportion to the number of substrings are necessary, hence increas- ing the circuit complexity and volume. This chapter proposes a novel single-switch DPP PWM converter to achieve simplified circuit. The proposed DPP converter is essentially the combination of a forward/flyback resonant inverter (FFRI) and voltage multiplier (VM). The fundamental operation analysis is performed, and the current sensorless con- trol strategy suitable for the proposed DPP converter is also discussed. A 30-W prototype of the proposed DPP converter was built, and various kinds of experimental verification tests were performed emulating partial shading conditions. With the proposed DPP converter, local MPPs of a partially shaded PV panel were successfully eliminated, and energy yield was significantly enhanced, demonstrating the efficacy and performance of the proposed DPP converter. The 30-W prototype of the proposed DPP converter was built, and its fundamental operation performance was measured. Experimental equalization tests emulating partial shading con-ditions were performed using solar array simulators or a real PV panel. With the prototype of the proposed DPP converter, local MPPs disappeared, and extractable maximum powers significantly increased, demonstrating the efficacy and performance of the proposed DPP converter.","PeriodicalId":191199,"journal":{"name":"Solar Panels and Photovoltaic Materials","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Panels and Photovoltaic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
the chapter Abstract The partial shading on a photovoltaic (PV) panel consisting of multiple substrings poses serious issues of decreased energy yield and occurrence of multiple maximum power points (MPPs). Although various kinds of differential power processing (DPP) converters have been proposed to prevent the partial shading issues, multiple switches and/or magnetic components in proportion to the number of substrings are necessary, hence increas- ing the circuit complexity and volume. This chapter proposes a novel single-switch DPP PWM converter to achieve simplified circuit. The proposed DPP converter is essentially the combination of a forward/flyback resonant inverter (FFRI) and voltage multiplier (VM). The fundamental operation analysis is performed, and the current sensorless con- trol strategy suitable for the proposed DPP converter is also discussed. A 30-W prototype of the proposed DPP converter was built, and various kinds of experimental verification tests were performed emulating partial shading conditions. With the proposed DPP converter, local MPPs of a partially shaded PV panel were successfully eliminated, and energy yield was significantly enhanced, demonstrating the efficacy and performance of the proposed DPP converter. The 30-W prototype of the proposed DPP converter was built, and its fundamental operation performance was measured. Experimental equalization tests emulating partial shading con-ditions were performed using solar array simulators or a real PV panel. With the prototype of the proposed DPP converter, local MPPs disappeared, and extractable maximum powers significantly increased, demonstrating the efficacy and performance of the proposed DPP converter.