Semantic Similarity Detection For Data Leak Prevention

Dan Du, Lu Yu, R. Brooks
{"title":"Semantic Similarity Detection For Data Leak Prevention","authors":"Dan Du, Lu Yu, R. Brooks","doi":"10.1145/2746266.2746270","DOIUrl":null,"url":null,"abstract":"To counter data breaches, we introduce a new data leak prevention (DLP) approach. Unlike regular expression methods, our approach extracts a small number of critical semantic features and requires a small training set. Existing tools concentrate mostly on data format where most defense and industry applications would be better served by monitoring the semantics of information in the enterprise. We demonstrate our approach by comparing its performance with other state-of-the-art methods, such as latent dirichlet allocation (LDA) and support vector machine (SVM). The experiment results suggest that the proposed approach have superior accuracy in terms of detection rate and false-positive (FP) rate.","PeriodicalId":106769,"journal":{"name":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Annual Cyber and Information Security Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746266.2746270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To counter data breaches, we introduce a new data leak prevention (DLP) approach. Unlike regular expression methods, our approach extracts a small number of critical semantic features and requires a small training set. Existing tools concentrate mostly on data format where most defense and industry applications would be better served by monitoring the semantics of information in the enterprise. We demonstrate our approach by comparing its performance with other state-of-the-art methods, such as latent dirichlet allocation (LDA) and support vector machine (SVM). The experiment results suggest that the proposed approach have superior accuracy in terms of detection rate and false-positive (FP) rate.
防止数据泄漏的语义相似度检测
为了防止数据泄露,我们引入了一种新的数据泄漏预防(DLP)方法。与正则表达式方法不同,我们的方法提取了少量的关键语义特征,并且需要一个小的训练集。现有的工具主要集中于数据格式,而大多数国防和工业应用程序可以通过监视企业中的信息语义来更好地服务于数据格式。我们通过将我们的方法与其他最先进的方法(如潜在狄利克雷分配(LDA)和支持向量机(SVM))的性能进行比较来证明我们的方法。实验结果表明,该方法在检测率和假阳性(FP)率方面具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信