Spatio-Temporal ECG Network for Detecting Cardiac Disorders from Multi-Lead ECGs

Long Chen, Zheheng Jiang, T. Almeida, F. Schlindwein, Jakevir S. Shoker, G. Ng, Huiyu Zhou, Xin Li
{"title":"Spatio-Temporal ECG Network for Detecting Cardiac Disorders from Multi-Lead ECGs","authors":"Long Chen, Zheheng Jiang, T. Almeida, F. Schlindwein, Jakevir S. Shoker, G. Ng, Huiyu Zhou, Xin Li","doi":"10.23919/cinc53138.2021.9662757","DOIUrl":null,"url":null,"abstract":"Automatic detection and classification of cardiac disorders play a critical role in the analysis of clinical electrocardiogram (ECG). Deep learning methods are effective for automated feature extraction and have shown promising results in ECG classification. In this work, we proposed a deep spatio-temporal ECG network (ST-ECGNet) to extract robust spatio-temporal features for detecting multiple cardiac disorders from the multi-lead ECG data. The proposed ST-ECGNet combines a Convolutional Neural Network (CNN) module for extracting local spatial features, an attention module for capturing global spatial features, and a Bi-directional Gated Recurrent Unit (Bi-GRU) module for extracting temporal features from ECG data. Specifically, the attention mechanism enables our deep learning architecture to focus on the most important and useful parts of the input to make more accurate predictions. In PhysioNet/Computing in Cardiology Challenge 2021, our entry was not officially ranked and scored on the test data of the Challenge, because our code was not successfully processed during the official phase and failed to run with errors.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic detection and classification of cardiac disorders play a critical role in the analysis of clinical electrocardiogram (ECG). Deep learning methods are effective for automated feature extraction and have shown promising results in ECG classification. In this work, we proposed a deep spatio-temporal ECG network (ST-ECGNet) to extract robust spatio-temporal features for detecting multiple cardiac disorders from the multi-lead ECG data. The proposed ST-ECGNet combines a Convolutional Neural Network (CNN) module for extracting local spatial features, an attention module for capturing global spatial features, and a Bi-directional Gated Recurrent Unit (Bi-GRU) module for extracting temporal features from ECG data. Specifically, the attention mechanism enables our deep learning architecture to focus on the most important and useful parts of the input to make more accurate predictions. In PhysioNet/Computing in Cardiology Challenge 2021, our entry was not officially ranked and scored on the test data of the Challenge, because our code was not successfully processed during the official phase and failed to run with errors.
从多导联心电图中检测心脏疾病的时空ECG网络
心功能障碍的自动检测与分类在临床心电图分析中起着至关重要的作用。深度学习方法是一种有效的自动特征提取方法,在心电分类中显示出良好的效果。在这项工作中,我们提出了一个深度时空ECG网络(ST-ECGNet)来提取鲁棒的时空特征,用于从多导联ECG数据中检测多种心脏疾病。所提出的ST-ECGNet结合了卷积神经网络(CNN)模块用于提取局部空间特征,注意力模块用于捕获全局空间特征,双向门控循环单元(Bi-GRU)模块用于从心电数据中提取时间特征。具体来说,注意力机制使我们的深度学习架构能够专注于输入中最重要和最有用的部分,从而做出更准确的预测。在PhysioNet/Computing In Cardiology Challenge 2021中,我们的参赛作品没有在挑战赛的测试数据上得到正式的排名和评分,因为我们的代码在官方阶段没有被成功处理,并且错误地运行失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信