Generalized feedforward filters with complex poles

T. Oliveira e Silva, P. Guedes de Oliveira, J. Príncipe, B. de Vries
{"title":"Generalized feedforward filters with complex poles","authors":"T. Oliveira e Silva, P. Guedes de Oliveira, J. Príncipe, B. de Vries","doi":"10.1109/NNSP.1992.253662","DOIUrl":null,"url":null,"abstract":"The authors propose an extension to an existing structure, the gamma filter, replacing the real pole on the tap-to-tap transfer function with a pair of complex conjugate poles and a zero. The new structure is, like the gamma filter, an IIR filter with restricted feedback whose stability is trivial to check. While the gamma filter decouples the memory depth from the filter order for low-pass signals, the proposed structure decouples the memory depth and the central frequency from the filter order for band-pass signals. The learning equations of the model parameters are presented and shown to introduce an additive O(p) complexity to the backpropagation algorithm, where p is the filter order. The error surface for a linear filter is investigated in a system identification context, and the presence of local minima is confirmed. The performance of the proposed model was found to be better than that of the time-delay neural net in a nonlinear system identification context.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The authors propose an extension to an existing structure, the gamma filter, replacing the real pole on the tap-to-tap transfer function with a pair of complex conjugate poles and a zero. The new structure is, like the gamma filter, an IIR filter with restricted feedback whose stability is trivial to check. While the gamma filter decouples the memory depth from the filter order for low-pass signals, the proposed structure decouples the memory depth and the central frequency from the filter order for band-pass signals. The learning equations of the model parameters are presented and shown to introduce an additive O(p) complexity to the backpropagation algorithm, where p is the filter order. The error surface for a linear filter is investigated in a system identification context, and the presence of local minima is confirmed. The performance of the proposed model was found to be better than that of the time-delay neural net in a nonlinear system identification context.<>
复极点广义前馈滤波器
作者提出了一种现有结构——伽玛滤波器的扩展,用一对复共轭极点和一个零点来代替分接到分接传递函数上的实极点。与伽玛滤波器一样,这种新结构是一种具有受限反馈的IIR滤波器,其稳定性很难检查。当伽玛滤波器将低通信号的存储深度与滤波器阶数解耦时,所提出的结构将带通信号的存储深度和中心频率与滤波器阶数解耦。给出了模型参数的学习方程,并证明了反向传播算法的复杂度为O(p),其中p为滤波器阶数。在系统辨识的背景下,研究了线性滤波器的误差曲面,并确定了局部极小值的存在。在非线性系统辨识环境下,该模型的性能优于时滞神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信