A NEW CONSTRUCTION OF OS OF SUBALGEBRAS AND INVARIANT SOLUTION OF THE BLACK-SCHOLES EQUATION

Z. Hussain
{"title":"A NEW CONSTRUCTION OF OS OF SUBALGEBRAS AND INVARIANT SOLUTION OF THE BLACK-SCHOLES EQUATION","authors":"Z. Hussain","doi":"10.26782/jmcms.2021.09.00005","DOIUrl":null,"url":null,"abstract":"In this manuscript, the Lie group technique is applied to construct a new OS and invariant solutions of a one-dimensional LA, which describes the symmetries properties of a nonlinear Black-Scholes model. The structure of LA depends on one parameter. We have shown a novel way to construct the so-called OS of subalgebras of the Black-Scholes equation by utilizing the given symmetries. We transform the symmetries of the Black-Scholes equation into a simple ordinary differential equation called the Lie equation, which provides us a way through which to construct a new optimal scheme of subalgebras of the Black-Scholes through applying the concept of LE. The OS which consists of minimal representatives is utilized to develop the invariant solution for the Black-Scholes equation. The fundamental use of the Lie group analysis to the differential equation is the categorization of group invariant solutions of differential equations via OS. Finally, we have utilized the OS to construct the invariant solution of the Black-Scholes equation.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2021.09.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, the Lie group technique is applied to construct a new OS and invariant solutions of a one-dimensional LA, which describes the symmetries properties of a nonlinear Black-Scholes model. The structure of LA depends on one parameter. We have shown a novel way to construct the so-called OS of subalgebras of the Black-Scholes equation by utilizing the given symmetries. We transform the symmetries of the Black-Scholes equation into a simple ordinary differential equation called the Lie equation, which provides us a way through which to construct a new optimal scheme of subalgebras of the Black-Scholes through applying the concept of LE. The OS which consists of minimal representatives is utilized to develop the invariant solution for the Black-Scholes equation. The fundamental use of the Lie group analysis to the differential equation is the categorization of group invariant solutions of differential equations via OS. Finally, we have utilized the OS to construct the invariant solution of the Black-Scholes equation.
子代数OS的新构造及black-scholes方程的不变解
本文应用李群技术构造了描述非线性Black-Scholes模型对称性性质的一维LA的新的OS和不变解。LA的结构取决于一个参数。利用给定的对称性,给出了一种构造Black-Scholes方程子代数OS的新方法。我们将Black-Scholes方程的对称性转化为一个简单的常微分方程,称为Lie方程,这为我们应用LE的概念构造Black-Scholes子代数的新最优格式提供了一种途径。利用由最小代表组成的OS,建立了Black-Scholes方程的不变解。李群分析对微分方程的基本应用是通过OS对微分方程的群不变解进行分类。最后,我们利用OS构造了Black-Scholes方程的不变解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信