Dynamic Path Optimization for Robot Route Planning

Ying Huang, Yingxu Wang, Omar A. Zatarain
{"title":"Dynamic Path Optimization for Robot Route Planning","authors":"Ying Huang, Yingxu Wang, Omar A. Zatarain","doi":"10.1109/ICCICC46617.2019.9146050","DOIUrl":null,"url":null,"abstract":"Robot is an autonomous system that integrates advances AI technologies. This paper deals with the adaptive path planning and optimization problems for robots in dynamic environments. We propose a novel route planning method based on the maze representation of workplace layouts. We generate a universal path tree by a path optimization algorithm. Then, any given entrances and exits of target nodes can be reduced to a deterministic path searching problem. Our method can quickly determine the optimal path between any pair of entrance/exit nodes. The maze-based method provides an efficient and robust route planning solution for robots in real-time and dynamic workplaces. Experiments have demonstrated the effectiveness of the method beyond traditional heuristic technologies.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robot is an autonomous system that integrates advances AI technologies. This paper deals with the adaptive path planning and optimization problems for robots in dynamic environments. We propose a novel route planning method based on the maze representation of workplace layouts. We generate a universal path tree by a path optimization algorithm. Then, any given entrances and exits of target nodes can be reduced to a deterministic path searching problem. Our method can quickly determine the optimal path between any pair of entrance/exit nodes. The maze-based method provides an efficient and robust route planning solution for robots in real-time and dynamic workplaces. Experiments have demonstrated the effectiveness of the method beyond traditional heuristic technologies.
机器人路径规划的动态路径优化
机器人是融合先进人工智能技术的自主系统。研究了动态环境下机器人的自适应路径规划与优化问题。提出了一种基于工作场所布局迷宫表示的路径规划方法。利用路径优化算法生成通用路径树。然后,任意给定的目标节点入口和出口都可以简化为确定性路径搜索问题。该方法可以快速确定任意一对入口/出口节点之间的最优路径。基于迷宫的方法为机器人在实时动态工作场所的路径规划提供了一种高效、鲁棒的解决方案。实验表明,该方法优于传统的启发式技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信