Penerapan Metode Segmentasi Gabor Filter Dan Algoritma Support Vector Machine Untuk Pendeteksian Penyakit Daun Tomat

Muhamad Habibullah, Hisyam Fahmi, Erna Herawati
{"title":"Penerapan Metode Segmentasi Gabor Filter Dan Algoritma Support Vector Machine Untuk Pendeteksian Penyakit Daun Tomat","authors":"Muhamad Habibullah, Hisyam Fahmi, Erna Herawati","doi":"10.18860/jrmm.v2i6.22023","DOIUrl":null,"url":null,"abstract":"This research discusses about processing a formulation that we can give to diseased tomato leaves. Gabor Filter is a method used to detect textures using frequency and orientation parameters. The Support Vector Machine (SVM) algorithm is an algorithm that can be used classifying tomato leaf diseases. The purpose of this research is to determine the accuracy of the Gabor Filter segmentation and the Support Vector Machine Algorithm for detecting tomato leaf disease to facilitate farmers in analyzing diseases on tomato leaves. The input will go through pre-processing of RGB pixels to Greyscale ones before being processed using Gabor Filter. This Gabor Filter process segments the image to produce a magnitude value. The results of the image magnitude values here will be seen and will enter the classification process using SVM. The SVM algorithm aims to find the best hyperlane on tomato leaves that have been segmented to separate classes in the input space. The application of the SVM method with class classification of tomato leaves by calculating the energy value and entropy of the extraction results, assisted by 12 features, namely: CiriR, Feature G, FeatureB, Standard DeviationR, Standard DeviationG, Standard DeviationB, SkewnessR, SkewnessG, SkewnessB, Mean, Energy, Entropy are used to the simplity classification process with a high degree of accuracy. The process of classification of tomato leaf disease with test data of 600 images managed to get an accuracy value of 74.1667%. In order to facilitate the performance of farmers in predicting tomato leaf disease.","PeriodicalId":270235,"journal":{"name":"Jurnal Riset Mahasiswa Matematika","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Mahasiswa Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/jrmm.v2i6.22023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research discusses about processing a formulation that we can give to diseased tomato leaves. Gabor Filter is a method used to detect textures using frequency and orientation parameters. The Support Vector Machine (SVM) algorithm is an algorithm that can be used classifying tomato leaf diseases. The purpose of this research is to determine the accuracy of the Gabor Filter segmentation and the Support Vector Machine Algorithm for detecting tomato leaf disease to facilitate farmers in analyzing diseases on tomato leaves. The input will go through pre-processing of RGB pixels to Greyscale ones before being processed using Gabor Filter. This Gabor Filter process segments the image to produce a magnitude value. The results of the image magnitude values here will be seen and will enter the classification process using SVM. The SVM algorithm aims to find the best hyperlane on tomato leaves that have been segmented to separate classes in the input space. The application of the SVM method with class classification of tomato leaves by calculating the energy value and entropy of the extraction results, assisted by 12 features, namely: CiriR, Feature G, FeatureB, Standard DeviationR, Standard DeviationG, Standard DeviationB, SkewnessR, SkewnessG, SkewnessB, Mean, Energy, Entropy are used to the simplity classification process with a high degree of accuracy. The process of classification of tomato leaf disease with test data of 600 images managed to get an accuracy value of 74.1667%. In order to facilitate the performance of farmers in predicting tomato leaf disease.
采用分割滤镜方法和支持算法支持番茄叶病变
本研究探讨了一种可用于番茄病叶处理的配方。Gabor Filter是一种使用频率和方向参数检测纹理的方法。支持向量机(SVM)算法是一种可以用于番茄叶片病害分类的算法。本研究的目的是确定Gabor滤波分割和支持向量机算法检测番茄叶片病害的准确性,以方便农民对番茄叶片病害进行分析。在使用Gabor过滤器处理之前,输入将经过RGB像素到灰度像素的预处理。这个Gabor Filter处理分割图像以产生一个幅度值。这里将看到图像大小值的结果,并将使用SVM进入分类过程。支持向量机算法的目标是在番茄叶片上找到最优的超车道,这些超车道在输入空间中被分割成不同的类别。应用SVM方法对番茄叶片进行分类,通过计算提取结果的能量值和熵,辅助12个特征,即CiriR、Feature G、Feature b、Standard DeviationR、Standard DeviationG、Standard DeviationB、SkewnessR、SkewnessG、SkewnessB、Mean、energy、entropy进行简单分类,具有较高的准确率。利用600张图像的测试数据对番茄叶病进行分类,准确率达到74.1667%。以方便农民预测番茄叶病的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信