{"title":"The future of nanoelectronics is black: From silicon to hexagonal carbon","authors":"U. Schwalke","doi":"10.1109/AFRCON.2013.6757838","DOIUrl":null,"url":null,"abstract":"Silicon has been the ultimate semiconductor material in micro- and nanoelectronics for more than 50 years. However, the use of pure silicon based devices will come to an end when CMOS downscaling will soon reach its physical limits. In order to gain performance, new materials with high carrier mobility are required. Hexagonal carbon seems to be a promising alternative to build high performance electronic devices. For example, carbon nanotube field-effect transistors (CNTFETs) can be used as active devices in integrated circuits and as memory cells. More recently, another hexagonal carbon modification became the focus of scientific attention: graphene. Just a few years after the Nobel Prize Award in 2010 for the graphene discovery, graphene-based transistors are emerging as other potential candidates to extend and eventually replace the traditional silicon MOSFET. This contribution will give a brief overview on the recent progress achieved in carbon-based nanoelectronics.","PeriodicalId":159306,"journal":{"name":"2013 Africon","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Africon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2013.6757838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon has been the ultimate semiconductor material in micro- and nanoelectronics for more than 50 years. However, the use of pure silicon based devices will come to an end when CMOS downscaling will soon reach its physical limits. In order to gain performance, new materials with high carrier mobility are required. Hexagonal carbon seems to be a promising alternative to build high performance electronic devices. For example, carbon nanotube field-effect transistors (CNTFETs) can be used as active devices in integrated circuits and as memory cells. More recently, another hexagonal carbon modification became the focus of scientific attention: graphene. Just a few years after the Nobel Prize Award in 2010 for the graphene discovery, graphene-based transistors are emerging as other potential candidates to extend and eventually replace the traditional silicon MOSFET. This contribution will give a brief overview on the recent progress achieved in carbon-based nanoelectronics.