Video Event Detection Using Temporal Pyramids of Visual Semantics with Kernel Optimization and Model Subspace Boosting

N. Codella, A. Natsev, G. Hua, Matthew L. Hill, Liangliang Cao, L. Gong, John R. Smith
{"title":"Video Event Detection Using Temporal Pyramids of Visual Semantics with Kernel Optimization and Model Subspace Boosting","authors":"N. Codella, A. Natsev, G. Hua, Matthew L. Hill, Liangliang Cao, L. Gong, John R. Smith","doi":"10.1109/ICME.2012.190","DOIUrl":null,"url":null,"abstract":"In this study, we present a system for video event classification that generates a temporal pyramid of static visual semantics using minimum-value, maximum-value, and average-value aggregation techniques. Kernel optimization and model subspace boosting are then applied to customize the pyramid for each event. SVM models are independently trained for each level in the pyramid using kernel selection according to 3-fold cross-validation. Kernels that both enforce static temporal order and permit temporal alignment are evaluated. Model subspace boosting is used to select the best combination of pyramid levels and aggregation techniques for each event. The NIST TRECVID Multimedia Event Detection (MED) 2011 dataset was used for evaluation. Results demonstrate that kernel optimizations using both temporally static and dynamic kernels together achieves better performance than any one particular method alone. In addition, model sub-space boosting reduces the size of the model by 80%, while maintaining 96% of the performance gain.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study, we present a system for video event classification that generates a temporal pyramid of static visual semantics using minimum-value, maximum-value, and average-value aggregation techniques. Kernel optimization and model subspace boosting are then applied to customize the pyramid for each event. SVM models are independently trained for each level in the pyramid using kernel selection according to 3-fold cross-validation. Kernels that both enforce static temporal order and permit temporal alignment are evaluated. Model subspace boosting is used to select the best combination of pyramid levels and aggregation techniques for each event. The NIST TRECVID Multimedia Event Detection (MED) 2011 dataset was used for evaluation. Results demonstrate that kernel optimizations using both temporally static and dynamic kernels together achieves better performance than any one particular method alone. In addition, model sub-space boosting reduces the size of the model by 80%, while maintaining 96% of the performance gain.
基于核优化和模型子空间增强的视觉语义时间金字塔视频事件检测
在本研究中,我们提出了一个视频事件分类系统,该系统使用最小值、最大值和平均值聚合技术生成静态视觉语义的时间金字塔。然后应用核优化和模型子空间提升来定制每个事件的金字塔。支持向量机模型是根据3倍交叉验证的核选择,对金字塔中的每一层独立训练的。同时执行静态时间顺序和允许时间对齐的内核将被求值。模型子空间增强用于为每个事件选择金字塔级别和聚合技术的最佳组合。使用NIST TRECVID多媒体事件检测(MED) 2011数据集进行评估。结果表明,同时使用临时静态和动态内核的内核优化比单独使用任何一种特定方法获得更好的性能。此外,模型子空间提升将模型的尺寸减小了80%,同时保持了96%的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信