Research on STLF Method Based on One-Dimensional Convolution and Slope Feature

Qi Zeng, Haihui Pan, B. Chen, Zhifang Liao
{"title":"Research on STLF Method Based on One-Dimensional Convolution and Slope Feature","authors":"Qi Zeng, Haihui Pan, B. Chen, Zhifang Liao","doi":"10.1109/ICPDS47662.2019.9017181","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting is of great importance to how to efficiently utilize generating units, optimize resource allocation and ensure the normal transmission of power in power system. This paper mainly studies how to improve the accuracy of short-term load forecasting through feature engineering and deep learning technology. Specifically, we construct a feature based on the slope of load data according to the changing trend of load data. We applied the proposed method to two real datasets of Hunan power grid and obtained MAPE values of 0.5758 and 0.5745 respectively. The experimental results show the effectiveness of the proposed method.","PeriodicalId":130202,"journal":{"name":"2019 IEEE International Conference on Power Data Science (ICPDS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Power Data Science (ICPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPDS47662.2019.9017181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Short-term load forecasting is of great importance to how to efficiently utilize generating units, optimize resource allocation and ensure the normal transmission of power in power system. This paper mainly studies how to improve the accuracy of short-term load forecasting through feature engineering and deep learning technology. Specifically, we construct a feature based on the slope of load data according to the changing trend of load data. We applied the proposed method to two real datasets of Hunan power grid and obtained MAPE values of 0.5758 and 0.5745 respectively. The experimental results show the effectiveness of the proposed method.
基于一维卷积和斜率特征的STLF方法研究
短期负荷预测对电力系统如何有效利用发电机组,优化资源配置,保证电力的正常输送具有重要意义。本文主要研究如何通过特征工程和深度学习技术来提高短期负荷预测的准确性。具体来说,我们根据荷载数据的变化趋势,构造了一个基于荷载数据斜率的特征。将该方法应用于湖南电网的两个真实数据集,得到的MAPE值分别为0.5758和0.5745。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信