ECG codebook model for Myocardial Infarction detection

Donglin Cao, Dazhen Lin, Yanping Lv
{"title":"ECG codebook model for Myocardial Infarction detection","authors":"Donglin Cao, Dazhen Lin, Yanping Lv","doi":"10.1109/ICNC.2014.6975939","DOIUrl":null,"url":null,"abstract":"ECG is a kind of high dimensional dataset and the useful information of illness only exists in few heartbeats. To achieve a good classification performance, most existing approaches used features proposed by human experts, and there is no approach for automatic useful feature extraction. To solve that problem, we propose an ECG Codebook Model (ECGCM) which automatically builds a small number of codes to represent the high dimension ECG data. ECGCM not only greatly reduces the dimension of ECG, but also contains more meaningful semantic information for Myocardial Infarction detection. Our experiment results show that ECGCM achieves 2% and 20.5% improvement in sensitivity and specificity respectively in Myocardial Infarction detection.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

ECG is a kind of high dimensional dataset and the useful information of illness only exists in few heartbeats. To achieve a good classification performance, most existing approaches used features proposed by human experts, and there is no approach for automatic useful feature extraction. To solve that problem, we propose an ECG Codebook Model (ECGCM) which automatically builds a small number of codes to represent the high dimension ECG data. ECGCM not only greatly reduces the dimension of ECG, but also contains more meaningful semantic information for Myocardial Infarction detection. Our experiment results show that ECGCM achieves 2% and 20.5% improvement in sensitivity and specificity respectively in Myocardial Infarction detection.
心电码本模型用于心肌梗死检测
心电图是一种高维数据集,有用的疾病信息只存在于少数心跳中。为了获得良好的分类性能,现有的方法大多采用人类专家提出的特征,没有自动提取有用特征的方法。为了解决这个问题,我们提出了一种心电码本模型(ECGCM),该模型可以自动生成少量的代码来表示高维心电数据。ECGCM不仅大大降低了心电图的维数,而且包含了更多有意义的语义信息,可以用于心肌梗死的检测。实验结果表明,ECGCM检测心肌梗死的灵敏度和特异性分别提高了2%和20.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信