Data Preprocessing Via Compositions Multi-Channel MRI Images to Improve Brain Tumor Segmentation

N. Tolstokulakov, Evgeny Nikolaevich Pavlovskiy, B. Tuchinov, E. Amelina, M. Amelin, A. Letyagin, S. Golushko, V. Groza
{"title":"Data Preprocessing Via Compositions Multi-Channel MRI Images to Improve Brain Tumor Segmentation","authors":"N. Tolstokulakov, Evgeny Nikolaevich Pavlovskiy, B. Tuchinov, E. Amelina, M. Amelin, A. Letyagin, S. Golushko, V. Groza","doi":"10.1109/ISBIWorkshops50223.2020.9153416","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) stays one of the most essential noninvasive methods for brain diagnostics. It allows obtaining the detailed 3D image of the brain, including various types of soft tissues. In this paper, we compare the influence of the multichannel data composition approach on the model’s performance. We consider the binary brain tumor segmentation problem evaluating the Dice, Recall and Precision metrics. One common way to process the medical images with the use of neural networks is to use 2D slices as the input. In contrast to the RGB images, there are plenty of methods of how to combine the multi-channel MRI data structure into the common format for ML-based algorithms. After evaluating several possible combinations we demonstrate the most performance improvement by 6–7% in Dice & Recall metrics using the pseudo-RGB approach.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic resonance imaging (MRI) stays one of the most essential noninvasive methods for brain diagnostics. It allows obtaining the detailed 3D image of the brain, including various types of soft tissues. In this paper, we compare the influence of the multichannel data composition approach on the model’s performance. We consider the binary brain tumor segmentation problem evaluating the Dice, Recall and Precision metrics. One common way to process the medical images with the use of neural networks is to use 2D slices as the input. In contrast to the RGB images, there are plenty of methods of how to combine the multi-channel MRI data structure into the common format for ML-based algorithms. After evaluating several possible combinations we demonstrate the most performance improvement by 6–7% in Dice & Recall metrics using the pseudo-RGB approach.
基于复合多通道MRI图像的数据预处理改进脑肿瘤分割
磁共振成像(MRI)仍然是最重要的非侵入性脑诊断方法之一。它可以获得详细的大脑3D图像,包括各种类型的软组织。在本文中,我们比较了多通道数据合成方法对模型性能的影响。我们考虑二元脑肿瘤分割问题,评估Dice, Recall和Precision指标。利用神经网络处理医学图像的一种常用方法是使用二维切片作为输入。与RGB图像相比,有很多方法可以将多通道MRI数据结构组合成基于ml的算法的通用格式。在评估了几种可能的组合后,我们使用伪rgb方法在Dice & Recall指标中证明了6-7%的最大性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信