A Photo-Realistic Generator of Most Expressive and Discriminant Changes in 2D Face Images

I. Xavier, M. Pereira, G. Giraldi, S. Gibson, C. Solomon, D. Rueckert, D. Gillies, C. Thomaz
{"title":"A Photo-Realistic Generator of Most Expressive and Discriminant Changes in 2D Face Images","authors":"I. Xavier, M. Pereira, G. Giraldi, S. Gibson, C. Solomon, D. Rueckert, D. Gillies, C. Thomaz","doi":"10.1109/EST.2015.17","DOIUrl":null,"url":null,"abstract":"This work describes a photo-realistic generator that creates semi-automatically face images of unseen subjects. Unlike previously described methods for generating face imagery, the approach described herein incorporates texture and shape information in a single computational framework based on high dimensional encoding of variance and discriminant information from sample groups. The method produces realistic, frontal pose, images with minimum manual intervention. We believe that the work presented describes a useful tool for face perception applications where privacy-preserving analysis might be an issue and the goal is not the recognition of the face itself, but rather its characteristics like gender, age or race, commonly explored in social and forensic contexts.","PeriodicalId":402244,"journal":{"name":"2015 Sixth International Conference on Emerging Security Technologies (EST)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Emerging Security Technologies (EST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2015.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work describes a photo-realistic generator that creates semi-automatically face images of unseen subjects. Unlike previously described methods for generating face imagery, the approach described herein incorporates texture and shape information in a single computational framework based on high dimensional encoding of variance and discriminant information from sample groups. The method produces realistic, frontal pose, images with minimum manual intervention. We believe that the work presented describes a useful tool for face perception applications where privacy-preserving analysis might be an issue and the goal is not the recognition of the face itself, but rather its characteristics like gender, age or race, commonly explored in social and forensic contexts.
在二维人脸图像中最具表现力和区别性变化的逼真生成器
这项工作描述了一个逼真的生成器,它可以半自动地创建看不见的对象的面部图像。与先前描述的生成人脸图像的方法不同,本文描述的方法将纹理和形状信息结合在基于样本组方差和判别信息的高维编码的单个计算框架中。该方法以最少的人工干预产生逼真的正面姿态图像。我们认为,这项工作为面部感知应用描述了一个有用的工具,在这些应用中,隐私保护分析可能是一个问题,目标不是识别面部本身,而是识别其特征,如性别、年龄或种族,这些特征通常在社会和法医环境中被探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信