Site-specific modeling tools for predicting the impact of corrupting mainbeam targets on STAP

K. Ohnishi, J. Bergin, C. M. Teixeira, P. Techau
{"title":"Site-specific modeling tools for predicting the impact of corrupting mainbeam targets on STAP","authors":"K. Ohnishi, J. Bergin, C. M. Teixeira, P. Techau","doi":"10.1109/RADAR.2005.1435857","DOIUrl":null,"url":null,"abstract":"This paper provides details about modeling tools being developed under the Defense Advanced Research Projects Agency's (DARPA) knowledge-based sensor signal processing and expert reasoning (KASSPER) program to efficiently predict the performance of GMTS sensors operating in real-world environments. Specifically this paper addresses model to compute losses due to targets corrupting the training data (W.L. Melvin and J.R. Guerci, May 2001) (J.S. Bergin et al., April 2002) for airborne radars that employ space-time adaptive processing (STAP) (J. Ward, December 1994). The modeling tools can be used to predict losses in a computationally efficient manner and therefore allow analysis of GMTI performance for realistic simulation scenarios that span very long time periods.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides details about modeling tools being developed under the Defense Advanced Research Projects Agency's (DARPA) knowledge-based sensor signal processing and expert reasoning (KASSPER) program to efficiently predict the performance of GMTS sensors operating in real-world environments. Specifically this paper addresses model to compute losses due to targets corrupting the training data (W.L. Melvin and J.R. Guerci, May 2001) (J.S. Bergin et al., April 2002) for airborne radars that employ space-time adaptive processing (STAP) (J. Ward, December 1994). The modeling tools can be used to predict losses in a computationally efficient manner and therefore allow analysis of GMTI performance for realistic simulation scenarios that span very long time periods.
特定于站点的建模工具,用于预测破坏主梁目标对STAP的影响
本文提供了在美国国防高级研究计划局(DARPA)基于知识的传感器信号处理和专家推理(KASSPER)计划下开发的建模工具的细节,以有效地预测在现实环境中运行的GMTS传感器的性能。具体来说,本文讨论了使用时空自适应处理(STAP) (J. Ward, 1994年12月)的机载雷达由于目标破坏训练数据而计算损失的模型(W.L. Melvin和J.R. Guerci, 2001年5月)(J.S. Bergin等,2002年4月)。建模工具可用于以计算高效的方式预测损失,因此可以对跨越很长时间的实际模拟场景的GMTI性能进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信