Move Prediction in Go with the Maximum Entropy Method

Nobuo Araki, Kazuhiro Yoshida, Yoshimasa Tsuruoka, Junichi Tsujii
{"title":"Move Prediction in Go with the Maximum Entropy Method","authors":"Nobuo Araki, Kazuhiro Yoshida, Yoshimasa Tsuruoka, Junichi Tsujii","doi":"10.1109/CIG.2007.368097","DOIUrl":null,"url":null,"abstract":"We address the problem of predicting moves in the board game of Go. We use the relative frequencies of local board patterns observed in game records to generate a ranked list of moves, and then apply the maximum entropy method (MEM) to the list to re-rank the moves. Move prediction is the task of selecting a small number of promising moves from all legal moves, and move prediction output can be used to improve the efficiency of the game tree search. The MEM enables us to make use of multiple overlapping features, while avoiding problems with data sparseness. Our system was trained on 20000 expert games and had 33.9% prediction accuracy in 500 expert games","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We address the problem of predicting moves in the board game of Go. We use the relative frequencies of local board patterns observed in game records to generate a ranked list of moves, and then apply the maximum entropy method (MEM) to the list to re-rank the moves. Move prediction is the task of selecting a small number of promising moves from all legal moves, and move prediction output can be used to improve the efficiency of the game tree search. The MEM enables us to make use of multiple overlapping features, while avoiding problems with data sparseness. Our system was trained on 20000 expert games and had 33.9% prediction accuracy in 500 expert games
最大熵法在围棋中的移动预测
我们解决了在围棋棋盘游戏中预测走法的问题。我们使用在游戏记录中观察到的本地棋盘模式的相对频率来生成一个排名的移动列表,然后对列表应用最大熵方法(MEM)来重新排列移动。移动预测是从所有合法的移动中选择少量有希望的移动,移动预测输出可以用来提高游戏树搜索的效率。MEM使我们能够利用多个重叠的特征,同时避免了数据稀疏的问题。我们的系统在20000个专家游戏中进行了训练,在500个专家游戏中有33.9%的预测准确率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信