{"title":"Mathematical model of steady-state countercurrent bed-shrinking reactor in dilute acid","authors":"Saranya Jaganathan, Rajendran Lakshmanan","doi":"10.53022/oarjet.2021.1.2.0106","DOIUrl":null,"url":null,"abstract":"The mathematical model of bed-shrinking in a countercurrent reactor proposed by Lee (Bioresource Technology 71 (2000) 29 - 39) is explored. This model is based on system of nonlinear differential equations. Analytically, the coupled nonlinear rate equations are solved. To produce approximate analytical expressions for hemicelluloses, oligomers, and xylose concentrations for all the values of non-dimensional parameters and , the homotopy perturbation technique is applied. Our analytical results were compared to existing experimental data and found to be very similar. The dilute-acid pretreatment/hydrolysis of lignocellulosic biomass is studied using this mathematical model in the reactor.","PeriodicalId":125730,"journal":{"name":"Open Access Research Journal of Engineering and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53022/oarjet.2021.1.2.0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mathematical model of bed-shrinking in a countercurrent reactor proposed by Lee (Bioresource Technology 71 (2000) 29 - 39) is explored. This model is based on system of nonlinear differential equations. Analytically, the coupled nonlinear rate equations are solved. To produce approximate analytical expressions for hemicelluloses, oligomers, and xylose concentrations for all the values of non-dimensional parameters and , the homotopy perturbation technique is applied. Our analytical results were compared to existing experimental data and found to be very similar. The dilute-acid pretreatment/hydrolysis of lignocellulosic biomass is studied using this mathematical model in the reactor.