Neural network detection of management fraud using published financial data

K. Fanning, K. O. Cogger
{"title":"Neural network detection of management fraud using published financial data","authors":"K. Fanning, K. O. Cogger","doi":"10.1002/(SICI)1099-1174(199803)7:1%3C21::AID-ISAF138%3E3.0.CO;2-K","DOIUrl":null,"url":null,"abstract":"This paper uses Artificial Neural Networks to develop a model for detecting management fraud. Although similar to the more widely investigated area of bankruptcy prediction, research has been minimal. To increase the body of knowledge on this subject, we offer an in-depth examination of important publicly available predictors of fraudulent financial statements. We test the value of these suggested variables for detection of fraudulent financial statements within a matched pairs sample. We use a self organizing Artificial Neural Network (ANN) AutoNet in conjunction with standard statistical tools to investigate the usefulness of these publicly available predictors. Our study results in a model with a high probability of detecting fraudulent financial statements on one sample. The study reinforces the validity and efficiency of AutoNet as a research tool and provides additional empirical evidence regarding the merits of suggested red flags for fraudulent financial statements.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"322","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-1174(199803)7:1%3C21::AID-ISAF138%3E3.0.CO;2-K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 322

Abstract

This paper uses Artificial Neural Networks to develop a model for detecting management fraud. Although similar to the more widely investigated area of bankruptcy prediction, research has been minimal. To increase the body of knowledge on this subject, we offer an in-depth examination of important publicly available predictors of fraudulent financial statements. We test the value of these suggested variables for detection of fraudulent financial statements within a matched pairs sample. We use a self organizing Artificial Neural Network (ANN) AutoNet in conjunction with standard statistical tools to investigate the usefulness of these publicly available predictors. Our study results in a model with a high probability of detecting fraudulent financial statements on one sample. The study reinforces the validity and efficiency of AutoNet as a research tool and provides additional empirical evidence regarding the merits of suggested red flags for fraudulent financial statements.
利用公开财务数据进行管理舞弊的神经网络检测
本文利用人工神经网络建立了一个管理欺诈检测模型。虽然与破产预测这一被广泛研究的领域相似,但研究却很少。为了增加这一主题的知识体系,我们提供了一个重要的公开可用的财务报表欺诈性预测的深入检查。我们测试了这些建议变量的价值,以检测在匹配对样本中的欺诈性财务报表。我们使用自组织人工神经网络(ANN)自动网络结合标准统计工具来调查这些公开可用的预测器的有用性。我们的研究结果在一个样本中发现欺诈性财务报表的概率很高的模型。该研究加强了AutoNet作为一种研究工具的有效性和效率,并提供了关于建议的财务报表欺诈危险信号的优点的额外经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信