Semi analytical expressions of mixed convection micropolar fluid flow using the q-Homotopy analysis method

C. Sumathi, V. Ananthaswamy, V. Santhi
{"title":"Semi analytical expressions of mixed convection micropolar fluid flow using the q-Homotopy analysis method","authors":"C. Sumathi, V. Ananthaswamy, V. Santhi","doi":"10.1063/5.0058276","DOIUrl":null,"url":null,"abstract":"The present article explores the mixed convection micropolar fluid flow between two vertical plates with varying temperature. The approximate analytical expression of the dimensionless velocity, dimensionless microrotation and dimensionless temperature of the non linear boundary value problem are obtained using the q-Homotopy analysis method (q-HAM). The effect of various prominent parameters like skin friction and Nusselt number are also discussed through the graphically and analytically. Our analytical results are compared with previous work and a good agreement is observed. This method can be easily extended to solve other non linear boundary value problem in physical and chemical sciences.","PeriodicalId":359324,"journal":{"name":"INTERNATIONAL VIRTUAL CONFERENCE ON RECENT MATERIALS AND ENGINEERING APPLICATIONS FOR SUSTAINABLE ENVIRONMENT (ICRMESE2020)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL VIRTUAL CONFERENCE ON RECENT MATERIALS AND ENGINEERING APPLICATIONS FOR SUSTAINABLE ENVIRONMENT (ICRMESE2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0058276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present article explores the mixed convection micropolar fluid flow between two vertical plates with varying temperature. The approximate analytical expression of the dimensionless velocity, dimensionless microrotation and dimensionless temperature of the non linear boundary value problem are obtained using the q-Homotopy analysis method (q-HAM). The effect of various prominent parameters like skin friction and Nusselt number are also discussed through the graphically and analytically. Our analytical results are compared with previous work and a good agreement is observed. This method can be easily extended to solve other non linear boundary value problem in physical and chemical sciences.
混合对流微极流体流动的q同伦半解析表达式
本文研究了两个不同温度垂直板间的混合对流微极流体流动。利用q-同伦分析方法(q-HAM),得到了非线性边值问题的无量纲速度、无量纲微旋和无量纲温度的近似解析表达式。通过图形化和解析化的方法讨论了表面摩擦、努塞尔数等重要参数的影响。我们的分析结果与前人的工作进行了比较,结果很吻合。该方法可以很容易地推广到物理和化学科学中的其他非线性边值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信