A sparse multi-dimensional Fast Fourier Transform with stability to noise in the context of image processing and change detection

Pierre-David Létourneau, M. H. Langston, R. Lethin
{"title":"A sparse multi-dimensional Fast Fourier Transform with stability to noise in the context of image processing and change detection","authors":"Pierre-David Létourneau, M. H. Langston, R. Lethin","doi":"10.1109/HPEC.2016.7761579","DOIUrl":null,"url":null,"abstract":"We present the sparse multidimensional FFT (sMFFT) for positive real vectors with application to image processing. Our algorithm works in any fixed dimension, requires an (almost)-optimal number of samples (O (Rlog (N/R))) and runs in O (Rlog (N/R)) complexity (to first order) for N unknowns and R nonzeros. It is stable to noise and exhibits an exponentially small probability of failure. Numerical results show sMFFT's large quantitative and qualitative strengths as compared to ℓ1-minimization for Compressive Sensing as well as advantages in the context of image processing and change detection.","PeriodicalId":308129,"journal":{"name":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2016.7761579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the sparse multidimensional FFT (sMFFT) for positive real vectors with application to image processing. Our algorithm works in any fixed dimension, requires an (almost)-optimal number of samples (O (Rlog (N/R))) and runs in O (Rlog (N/R)) complexity (to first order) for N unknowns and R nonzeros. It is stable to noise and exhibits an exponentially small probability of failure. Numerical results show sMFFT's large quantitative and qualitative strengths as compared to ℓ1-minimization for Compressive Sensing as well as advantages in the context of image processing and change detection.
一种对噪声稳定的稀疏多维快速傅里叶变换在图像处理和变化检测中的应用
提出了正实向量稀疏多维FFT (sMFFT)及其在图像处理中的应用。我们的算法可以在任何固定的维度上工作,需要(几乎)最优的样本数量(O (Rlog (N/R)),并且对于N个未知数和R个非零,以O (Rlog (N/R))复杂度(到一阶)运行。它对噪声稳定,故障概率呈指数级小。数值结果表明,sMFFT在定量和定性上都比最小化压缩感知具有优势,并且在图像处理和变化检测方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信