{"title":"Optimizing neural networks for playing tic-tac-toe","authors":"M. Sungur, U. Halici","doi":"10.1109/IJCNN.1992.227268","DOIUrl":null,"url":null,"abstract":"A neural network approach for playing the game tic-tac-toe is introduced. The problem is considered as a combinatorial optimization problem aiming to maximize the value of a heuristic evaluation function. The proposed design guarantees a feasible solution, including in the cases where a winning move is never missed and a losing position is always prevented, if possible. The design has been implemented on a Hopfield network, a Boltzmann machine, and a Gaussian machine. The performance of the models was compared through simulation.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"73 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A neural network approach for playing the game tic-tac-toe is introduced. The problem is considered as a combinatorial optimization problem aiming to maximize the value of a heuristic evaluation function. The proposed design guarantees a feasible solution, including in the cases where a winning move is never missed and a losing position is always prevented, if possible. The design has been implemented on a Hopfield network, a Boltzmann machine, and a Gaussian machine. The performance of the models was compared through simulation.<>