Polynomial mixing for time-changes of unipotent flows

Davide Ravotti
{"title":"Polynomial mixing for time-changes of unipotent flows","authors":"Davide Ravotti","doi":"10.2422/2036-2145.202011_111","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected semisimple Lie group with finite centre, and let $M= \\Gamma \\backslash G$ be a compact homogeneous manifold. Under a spectral gap assumption, we show that smooth time-changes of any unipotent flow on $M$ have polynomial decay of correlations. Our result applies also in the case where $M$ is a finite volume, non-compact quotient under some additional assumptions on the generator of the time-change. This generalizes a result by Forni and Ulcigrai (JMD, 2012) for smooth time-changes of horocycle flows on compact surfaces.","PeriodicalId":407889,"journal":{"name":"arXiv: Dynamical Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202011_111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $G$ be a connected semisimple Lie group with finite centre, and let $M= \Gamma \backslash G$ be a compact homogeneous manifold. Under a spectral gap assumption, we show that smooth time-changes of any unipotent flow on $M$ have polynomial decay of correlations. Our result applies also in the case where $M$ is a finite volume, non-compact quotient under some additional assumptions on the generator of the time-change. This generalizes a result by Forni and Ulcigrai (JMD, 2012) for smooth time-changes of horocycle flows on compact surfaces.
单幂流时变的多项式混合
设$G$是一个中心有限的连通半单李群,且设$M= \Gamma \反斜杠G$是一个紧齐次流形。在谱隙假设下,我们证明了M上任意单幂流的光滑时变具有多项式相关衰减。我们的结果也适用于$M$是有限体积非紧商的情况下,在时间变化的产生器的一些附加假设下。这推广了Forni和Ulcigrai (JMD, 2012)关于致密表面上环流平滑时间变化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信