Comprehensibility of Classification Trees–Survey Design

Rok Piltaver, M. Luštrek, M. Gams, S. M. Ipšić
{"title":"Comprehensibility of Classification Trees–Survey Design","authors":"Rok Piltaver, M. Luštrek, M. Gams, S. M. Ipšić","doi":"10.6025/ISEJ/2019/6/1/15-20","DOIUrl":null,"url":null,"abstract":": Comprehensibility is the decisive factor for application of classifiers in practice. However, most algorithms that learn comprehensible classifiers use classification model size as a metric that guides the search in the space of all possible classifiers instead of comprehensibility - which is ill-defined. Several surveys have shown that such simple complexity metrics do not correspond well to the comprehensibility of classification trees. This paper therefore suggests a classification tree comprehensibility survey in order to derive an exhaustive comprehensibility metrics better reflecting the human sense of classifier comprehensibility and obtain new insights about comprehensibility of classification trees.","PeriodicalId":140458,"journal":{"name":"Information Security Education Journal (ISEJ)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Education Journal (ISEJ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6025/ISEJ/2019/6/1/15-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

: Comprehensibility is the decisive factor for application of classifiers in practice. However, most algorithms that learn comprehensible classifiers use classification model size as a metric that guides the search in the space of all possible classifiers instead of comprehensibility - which is ill-defined. Several surveys have shown that such simple complexity metrics do not correspond well to the comprehensibility of classification trees. This paper therefore suggests a classification tree comprehensibility survey in order to derive an exhaustive comprehensibility metrics better reflecting the human sense of classifier comprehensibility and obtain new insights about comprehensibility of classification trees.
分类树的可理解性——调查设计
可理解性是分类器在实际应用中的决定性因素。然而,大多数学习可理解分类器的算法使用分类模型大小作为指导在所有可能分类器的空间中搜索的度量,而不是可理解性——这是不明确的。几项调查表明,这种简单的复杂性度量并不符合分类树的可理解性。因此,本文提出了一种分类树可理解性调查方法,以期得出一种更能反映人类对分类器可理解性感知的详尽的可理解性指标,并获得关于分类树可理解性的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信