Decentralized Multi-Agent Motion Planning in Dynamic Environments

Josh Netter, K. Vamvoudakis
{"title":"Decentralized Multi-Agent Motion Planning in Dynamic Environments","authors":"Josh Netter, K. Vamvoudakis","doi":"10.23919/ACC55779.2023.10156024","DOIUrl":null,"url":null,"abstract":"In this paper we present a decentralized multi-agent motion planning algorithm for navigation in dynamic environments. Each agent constructs a graph of boundary value problems in the environment considering their own kinodynamic constraints using a learning-based motion planning framework. A game-theoretic approach is then used by each agent to select their individual path through the environment while considering the planned motion of other agents. This path is updated online to ensure collisions are avoided, and to provide a method of counteracting the freezing robot problem. The effectiveness of the algorithm is illustrated in simulations.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a decentralized multi-agent motion planning algorithm for navigation in dynamic environments. Each agent constructs a graph of boundary value problems in the environment considering their own kinodynamic constraints using a learning-based motion planning framework. A game-theoretic approach is then used by each agent to select their individual path through the environment while considering the planned motion of other agents. This path is updated online to ensure collisions are avoided, and to provide a method of counteracting the freezing robot problem. The effectiveness of the algorithm is illustrated in simulations.
动态环境下的分散多智能体运动规划
针对动态环境下的导航问题,提出了一种分散的多智能体运动规划算法。每个智能体使用基于学习的运动规划框架,考虑自身的动力学约束,在环境中构建一个边界值问题图。然后,每个智能体使用博弈论方法在考虑其他智能体的计划运动的同时,选择他们在环境中的个人路径。该路径在线更新,以确保避免碰撞,并提供一种方法来抵消机器人冻结问题。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信