A New Benchmark Dataset for Texture Image Analysis and Surface Defect Detection.

Shervan Fekri-Ershad
{"title":"A New Benchmark Dataset for Texture Image Analysis and Surface Defect Detection.","authors":"Shervan Fekri-Ershad","doi":"10.13140/RG.2.2.33612.46722","DOIUrl":null,"url":null,"abstract":"Texture analysis plays an important role in many image processing applications to describe the image content or objects. On the other hand, visual surface defect detection is a highly research field in the computer vision. Surface defect refers to abnormalities in the texture of the surface. So, in this paper a dual purpose benchmark dataset is proposed for texture image analysis and surface defect detection titled stone texture image (STI dataset). The proposed benchmark dataset consist of 4 different class of stone texture images. The proposed benchmark dataset have some unique properties to make it very near to real applications. Local rotation, different zoom rates, unbalanced classes, variation of textures in size are some properties of the proposed dataset. In the result part, some descriptors are applied on this dataset to evaluate the proposed STI dataset in comparison with other state-of-the-art datasets.","PeriodicalId":185904,"journal":{"name":"arXiv: Computer Vision and Pattern Recognition","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13140/RG.2.2.33612.46722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Texture analysis plays an important role in many image processing applications to describe the image content or objects. On the other hand, visual surface defect detection is a highly research field in the computer vision. Surface defect refers to abnormalities in the texture of the surface. So, in this paper a dual purpose benchmark dataset is proposed for texture image analysis and surface defect detection titled stone texture image (STI dataset). The proposed benchmark dataset consist of 4 different class of stone texture images. The proposed benchmark dataset have some unique properties to make it very near to real applications. Local rotation, different zoom rates, unbalanced classes, variation of textures in size are some properties of the proposed dataset. In the result part, some descriptors are applied on this dataset to evaluate the proposed STI dataset in comparison with other state-of-the-art datasets.
纹理图像分析和表面缺陷检测的新基准数据集。
纹理分析在许多图像处理应用中起着重要的作用,用于描述图像的内容或对象。另一方面,视觉表面缺陷检测是计算机视觉研究的热点。表面缺陷是指表面纹理的异常。为此,本文提出了一种用于纹理图像分析和表面缺陷检测的双用途基准数据集——石材纹理图像(STI数据集)。提出的基准数据集由4类不同的石材纹理图像组成。所提出的基准数据集具有一些独特的属性,使其非常接近实际应用程序。局部旋转、不同缩放率、不平衡类、纹理大小变化是该数据集的一些特性。在结果部分,将一些描述符应用于该数据集,以与其他最新数据集进行比较,评估所提出的STI数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信