A New Method for Link Prediction Using Various Features in Social Networks

Yu Zhang, Kening Gao, Feng Li, Ge Yu
{"title":"A New Method for Link Prediction Using Various Features in Social Networks","authors":"Yu Zhang, Kening Gao, Feng Li, Ge Yu","doi":"10.1109/WISA.2014.34","DOIUrl":null,"url":null,"abstract":"Link prediction is a basic problem in the research of social networks. At present, most link prediction algorithms are based on the features extracted from network structure, few research concerns the effect of natural attributes of nodes for creating a link. In this paper we develop a novel way to predict links based on Random Walk algorithm using the information from both the network topology and rich node attributes. The experiment result show that our method can help improves the prediction accuracy and it proves that node attributes have a real effect on link creation.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Link prediction is a basic problem in the research of social networks. At present, most link prediction algorithms are based on the features extracted from network structure, few research concerns the effect of natural attributes of nodes for creating a link. In this paper we develop a novel way to predict links based on Random Walk algorithm using the information from both the network topology and rich node attributes. The experiment result show that our method can help improves the prediction accuracy and it proves that node attributes have a real effect on link creation.
一种利用社交网络中各种特征进行链接预测的新方法
链接预测是社交网络研究中的一个基本问题。目前,大多数链路预测算法都是基于从网络结构中提取的特征,很少有研究关注节点的自然属性对建立链路的影响。本文提出了一种基于随机行走算法的链路预测方法,该算法同时利用了网络拓扑信息和富节点属性信息。实验结果表明,该方法有助于提高预测精度,并证明了节点属性对链路创建的真实影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信