Low Resource Multimodal Neural Machine Translation of English-Hindi in News Domain

Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay
{"title":"Low Resource Multimodal Neural Machine Translation of English-Hindi in News Domain","authors":"Loitongbam Sanayai Meetei, Thoudam Doren Singh, Sivaji Bandyopadhyay","doi":"10.26615/978-954-452-073-1_004","DOIUrl":null,"url":null,"abstract":"Incorporating multiple input modalities in a machine translation (MT) system is gaining popularity among MT researchers. Unlike the publicly available dataset for Multimodal Machine Translation (MMT) tasks, where the captions are short image descriptions, the news captions provide a more detailed description of the contents of the images. As a result, numerous named entities relating to specific persons, locations, etc., are found. In this paper, we acquire two monolingual news datasets reported in English and Hindi paired with the images to generate a synthetic English-Hindi parallel corpus. The parallel corpus is used to train the English-Hindi Neural Machine Translation (NMT) and an English-Hindi MMT system by incorporating the image feature paired with the corresponding parallel corpus. We also conduct a systematic analysis to evaluate the English-Hindi MT systems with 1) more synthetic data and 2) by adding back-translated data. Our finding shows improvement in terms of BLEU scores for both the NMT (+8.05) and MMT (+11.03) systems.","PeriodicalId":114625,"journal":{"name":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-073-1_004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Incorporating multiple input modalities in a machine translation (MT) system is gaining popularity among MT researchers. Unlike the publicly available dataset for Multimodal Machine Translation (MMT) tasks, where the captions are short image descriptions, the news captions provide a more detailed description of the contents of the images. As a result, numerous named entities relating to specific persons, locations, etc., are found. In this paper, we acquire two monolingual news datasets reported in English and Hindi paired with the images to generate a synthetic English-Hindi parallel corpus. The parallel corpus is used to train the English-Hindi Neural Machine Translation (NMT) and an English-Hindi MMT system by incorporating the image feature paired with the corresponding parallel corpus. We also conduct a systematic analysis to evaluate the English-Hindi MT systems with 1) more synthetic data and 2) by adding back-translated data. Our finding shows improvement in terms of BLEU scores for both the NMT (+8.05) and MMT (+11.03) systems.
新闻领域英语-印地语低资源多模态神经机器翻译
在机器翻译系统中引入多种输入模态是机器翻译研究人员越来越关注的问题。与多模态机器翻译(MMT)任务的公开可用数据集不同,其中的标题是简短的图像描述,新闻标题提供了对图像内容的更详细的描述。结果,发现了许多与特定人员、地点等有关的已命名实体。在本文中,我们获取了英语和印地语的两个单语新闻数据集,并将其与图像配对,以生成一个合成的英语-印地语平行语料库。将图像特征与对应的并行语料库相结合,利用并行语料库训练英北神经机器翻译(NMT)和英北MMT系统。我们还进行了一个系统的分析,通过1)更多的合成数据和2)通过添加回译数据来评估英语-印地语MT系统。我们的研究结果显示,NMT(+8.05)和MMT(+11.03)系统的BLEU得分均有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信