Performance Evaluation of Sparse Storage Formats

A. Usman, M. Luján, L. Freeman
{"title":"Performance Evaluation of Sparse Storage Formats","authors":"A. Usman, M. Luján, L. Freeman","doi":"10.1109/ICICT.2005.1598546","DOIUrl":null,"url":null,"abstract":"Sparse matrices are pervasive in many Computational Science and Engineering (CS&E) applications. There is a significant number of storage formats used to represent sparse matrices. This paper presents a performance evaluation of storage formats for the main kernel of iterative methods for numerical linear algebra, namely matrix-vector multiplication. The experiments consider a set of almost 200 sparse matrices from the Matrix Market collection covering both systems of linear equations and eigenvalue problems. For each matrix, the experiments perform the matrix-vector multiplication with most commonly used sparse storage formats and also the recently proposed Java Sparse Array storage fonmat. To the best of the authors' knowledge, there is no other performance evaluation of storage formats for sparse matrices which consider such a variety of matrices and storage formats.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse matrices are pervasive in many Computational Science and Engineering (CS&E) applications. There is a significant number of storage formats used to represent sparse matrices. This paper presents a performance evaluation of storage formats for the main kernel of iterative methods for numerical linear algebra, namely matrix-vector multiplication. The experiments consider a set of almost 200 sparse matrices from the Matrix Market collection covering both systems of linear equations and eigenvalue problems. For each matrix, the experiments perform the matrix-vector multiplication with most commonly used sparse storage formats and also the recently proposed Java Sparse Array storage fonmat. To the best of the authors' knowledge, there is no other performance evaluation of storage formats for sparse matrices which consider such a variety of matrices and storage formats.
稀疏存储格式的性能评价
稀疏矩阵在许多计算科学与工程(CS&E)应用中普遍存在。有大量的存储格式用于表示稀疏矩阵。本文对数值线性代数迭代法的主要核心——矩阵-向量乘法的存储格式进行了性能评价。实验考虑来自矩阵市场集合的近200个稀疏矩阵的集合,涵盖线性方程组和特征值问题的系统。对于每个矩阵,实验使用最常用的稀疏存储格式和最近提出的Java稀疏数组存储格式执行矩阵向量乘法。据作者所知,目前还没有其他考虑如此多种矩阵和存储格式的稀疏矩阵存储格式的性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信