Text coherence new method using word2vec sentence vectors and most likely n-grams

Mohamad Abdolahi Kharazmi, M. Kharazmi
{"title":"Text coherence new method using word2vec sentence vectors and most likely n-grams","authors":"Mohamad Abdolahi Kharazmi, M. Kharazmi","doi":"10.1109/ICSPIS.2017.8311598","DOIUrl":null,"url":null,"abstract":"Discourse coherence modeling evaluation remains a challenge task in all Natural Language Processing subfields. Most proposed approaches focus on feature engineering, which accepts the sophisticated features to capture the logic, syntactic or semantic relationships between all sentences within a text. This paper investigates the automatic evaluation of text coherence. We introduce a fully-automatic rich statistical model of local and global coherence that uses word2vec approach to assess the coherence a document. Our modeling approach relies on numerical vectors derived from word2vec algorithm applied on a very large collection of texts. We successfully combined the word2vec vectors and most likely n-grams with cohesive LD-n-grams perplexity to assess the coherence and topic integrity of document. We present experimental results that assess the predictive power that it does not depend on the language and its semantic concepts. So it has the ability to apply on any language. Our model achieves state-of-the-art performance in coherence evaluation and order discrimination task on two datasets widely used in the previous methods.","PeriodicalId":380266,"journal":{"name":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS.2017.8311598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Discourse coherence modeling evaluation remains a challenge task in all Natural Language Processing subfields. Most proposed approaches focus on feature engineering, which accepts the sophisticated features to capture the logic, syntactic or semantic relationships between all sentences within a text. This paper investigates the automatic evaluation of text coherence. We introduce a fully-automatic rich statistical model of local and global coherence that uses word2vec approach to assess the coherence a document. Our modeling approach relies on numerical vectors derived from word2vec algorithm applied on a very large collection of texts. We successfully combined the word2vec vectors and most likely n-grams with cohesive LD-n-grams perplexity to assess the coherence and topic integrity of document. We present experimental results that assess the predictive power that it does not depend on the language and its semantic concepts. So it has the ability to apply on any language. Our model achieves state-of-the-art performance in coherence evaluation and order discrimination task on two datasets widely used in the previous methods.
使用word2vec句子向量和最有可能n-grams的文本连贯新方法
语篇连贯建模评价在自然语言处理的各个子领域都是一个具有挑战性的任务。大多数提出的方法都集中在特征工程上,它接受复杂的特征来捕获文本中所有句子之间的逻辑、句法或语义关系。本文对篇章连贯的自动评价进行了研究。我们引入了一个全自动的丰富的本地和全局一致性统计模型,该模型使用word2vec方法来评估文档的一致性。我们的建模方法依赖于word2vec算法衍生的数值向量,该算法应用于一个非常大的文本集合。我们成功地将word2vec向量和最有可能的n-grams与内聚LD-n-grams困惑相结合,以评估文档的连贯性和主题完整性。我们提出的实验结果评估了它不依赖于语言及其语义概念的预测能力。所以它能够适用于任何语言。我们的模型在先前方法中广泛使用的两个数据集上实现了最先进的一致性评估和顺序判别任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信