{"title":"A hybrid self-adaptive particle filter through KLD-sampling and SAMCL","authors":"A. W. Li, G. S. Bastos","doi":"10.1109/ICAR.2017.8023503","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a hybrid method of a particle filter for localization in mobile robotics. The main references are the particle filter based on Kullback-Leibler divergence and a self-adaptive particle filter using grid-energy. Gains and drawbacks of each method are discussed and compared with the developed algorithm. This hybrid particle filter explores the best quality of each method and the final result brings a solution to the localization problem: position tracking, global localization and kidnapping in a deterministic environment. This work was developed using the ROS framework (Robot Operating System) and tested with a Pioneer 3DX robot in real and simulation environments.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The purpose of this paper is to present a hybrid method of a particle filter for localization in mobile robotics. The main references are the particle filter based on Kullback-Leibler divergence and a self-adaptive particle filter using grid-energy. Gains and drawbacks of each method are discussed and compared with the developed algorithm. This hybrid particle filter explores the best quality of each method and the final result brings a solution to the localization problem: position tracking, global localization and kidnapping in a deterministic environment. This work was developed using the ROS framework (Robot Operating System) and tested with a Pioneer 3DX robot in real and simulation environments.