A hybrid self-adaptive particle filter through KLD-sampling and SAMCL

A. W. Li, G. S. Bastos
{"title":"A hybrid self-adaptive particle filter through KLD-sampling and SAMCL","authors":"A. W. Li, G. S. Bastos","doi":"10.1109/ICAR.2017.8023503","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a hybrid method of a particle filter for localization in mobile robotics. The main references are the particle filter based on Kullback-Leibler divergence and a self-adaptive particle filter using grid-energy. Gains and drawbacks of each method are discussed and compared with the developed algorithm. This hybrid particle filter explores the best quality of each method and the final result brings a solution to the localization problem: position tracking, global localization and kidnapping in a deterministic environment. This work was developed using the ROS framework (Robot Operating System) and tested with a Pioneer 3DX robot in real and simulation environments.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The purpose of this paper is to present a hybrid method of a particle filter for localization in mobile robotics. The main references are the particle filter based on Kullback-Leibler divergence and a self-adaptive particle filter using grid-energy. Gains and drawbacks of each method are discussed and compared with the developed algorithm. This hybrid particle filter explores the best quality of each method and the final result brings a solution to the localization problem: position tracking, global localization and kidnapping in a deterministic environment. This work was developed using the ROS framework (Robot Operating System) and tested with a Pioneer 3DX robot in real and simulation environments.
基于kld采样和SAMCL的混合自适应粒子滤波器
提出了一种用于移动机器人定位的混合粒子滤波方法。主要参考文献有基于Kullback-Leibler散度的粒子滤波和基于网格能量的自适应粒子滤波。讨论了每种方法的优点和缺点,并与所开发的算法进行了比较。该混合粒子滤波器探索了每种方法的最佳质量,最终结果解决了定位问题:确定性环境下的位置跟踪、全局定位和绑架。这项工作是使用ROS框架(机器人操作系统)开发的,并在真实和模拟环境中使用先锋3DX机器人进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信