A Study of Lagrangian Relaxation and Dantzig-Wolfe Decompositions for the Generalized Assignment Problem

E. Gattal, Ala-Eddine Benrazek
{"title":"A Study of Lagrangian Relaxation and Dantzig-Wolfe Decompositions for the Generalized Assignment Problem","authors":"E. Gattal, Ala-Eddine Benrazek","doi":"10.1109/icnas53565.2021.9628940","DOIUrl":null,"url":null,"abstract":"This article presents a comparative study of two mathematical methods for data reduction, namely Lagrangian Relaxation (LR) and Dantzig-Wolfe Decompositions (DWD) in Integer Linear Programming (ILP). The analysis is performed on the classical Generalized Assignment Problem (GAP). To this end, we have used the general-purpose MIP solver. However, the experimentation is done on a widely used GAP benchmark of large and complex instances. The two methods have been evaluated from the standpoint of solution quality and the time required to find it.","PeriodicalId":321454,"journal":{"name":"2021 International Conference on Networking and Advanced Systems (ICNAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Advanced Systems (ICNAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icnas53565.2021.9628940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a comparative study of two mathematical methods for data reduction, namely Lagrangian Relaxation (LR) and Dantzig-Wolfe Decompositions (DWD) in Integer Linear Programming (ILP). The analysis is performed on the classical Generalized Assignment Problem (GAP). To this end, we have used the general-purpose MIP solver. However, the experimentation is done on a widely used GAP benchmark of large and complex instances. The two methods have been evaluated from the standpoint of solution quality and the time required to find it.
广义分配问题的拉格朗日松弛和dantzigg - wolfe分解研究
本文比较研究了整数线性规划(ILP)中数据约简的两种数学方法——拉格朗日松弛法(LR)和dantzigg - wolfe分解法(DWD)。对经典的广义分配问题(GAP)进行了分析。为此,我们使用了通用的MIP求解器。然而,实验是在广泛使用的大型复杂实例的GAP基准上进行的。从溶液质量和找到溶液所需时间的角度对这两种方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信