B. A. D. Silva, Paulo Mol, O. Fonseca, Ítalo F. S. Cunha, R. Ferreira, Ethan Katz-Bassett
{"title":"Automatic Inference of BGP Location Communities","authors":"B. A. D. Silva, Paulo Mol, O. Fonseca, Ítalo F. S. Cunha, R. Ferreira, Ethan Katz-Bassett","doi":"10.1145/3489048.3522643","DOIUrl":null,"url":null,"abstract":"We present a set of techniques to infer the semantics of BGP communities from public BGP data. Our techniques infer communities related to the entities or locations traversed by a route by correlating communities with AS paths. We also propose a set of heuristics to filter incorrect inferences introduced by misbehaving networks, sharing of BGP communities among sibling autonomous systems, and inconsistent BGP dumps. We apply our techniques to billions of routing records from public BGP collectors and make available a public database with more than 15 thousand location communities. Our comparison with manually-built databases shows our techniques provide high precision (up to 93%), better coverage (up to 81% recall), and dynamic updates, complementing operators' and researchers' abilities to reason about BGP community semantics.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a set of techniques to infer the semantics of BGP communities from public BGP data. Our techniques infer communities related to the entities or locations traversed by a route by correlating communities with AS paths. We also propose a set of heuristics to filter incorrect inferences introduced by misbehaving networks, sharing of BGP communities among sibling autonomous systems, and inconsistent BGP dumps. We apply our techniques to billions of routing records from public BGP collectors and make available a public database with more than 15 thousand location communities. Our comparison with manually-built databases shows our techniques provide high precision (up to 93%), better coverage (up to 81% recall), and dynamic updates, complementing operators' and researchers' abilities to reason about BGP community semantics.