Solar activity and Earth seismicity

V. Yanchukovsky
{"title":"Solar activity and Earth seismicity","authors":"V. Yanchukovsky","doi":"10.12737/STP-71202109","DOIUrl":null,"url":null,"abstract":"Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.","PeriodicalId":351867,"journal":{"name":"Solnechno-Zemnaya Fizika","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solnechno-Zemnaya Fizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/STP-71202109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.
太阳活动和地球地震活动
利用50多年(包括20-24太阳活动周期)的连续长期观测结果,研究了地球地震活动与太阳活动的关系。在太阳活动衰退期,来自高纬度日冕洞的带电粒子通量增加,以及在太阳活动极小期,银河宇宙射线强度达到最大值时,地球上的强震次数增加。强烈地震(6级)数量的变化是根据银河宇宙射线强度的变化,Forbush减小,太阳宇宙射线(GLE事件)的地面增强来考虑的。根据Forbush减弱幅度的不同,在Forbush减弱后,强震次数增加,滞后时间约为1 ~6天;GLE事件后,强震次数增加约8天。在强地震的次数中,观察到六个月的变化,这似乎与宇宙射线六个月的变化一样,延迟了1-2个月。据推测,太阳活动和地球地震活动之间的关系似乎是通过银河系宇宙射线和大气过程的调制来调解的,这些过程在构造活动已经准备好的地区引发地震的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信