Banana cultivar classification using scale invariant shape analysis

Kwankamon Dittakan, Nawanol Theera-Ampornpunt, Waraphon Witthayarat, Sararat Hinnoy, Supawit Klaiwan, Thunyatorn Pratheep
{"title":"Banana cultivar classification using scale invariant shape analysis","authors":"Kwankamon Dittakan, Nawanol Theera-Ampornpunt, Waraphon Witthayarat, Sararat Hinnoy, Supawit Klaiwan, Thunyatorn Pratheep","doi":"10.1109/INCIT.2017.8257854","DOIUrl":null,"url":null,"abstract":"This paper presents scale-invariant shape analysis with respect to banana cultivar detection. We consider three cultivars: Cavendish, Lady Finger, and Pisang Awak. We present the appropriate image preprocessing methods and compare different feature selection algorithms, numbers of features, as well as various machine learning models as the classifier. We found that the best feature selection method is chi square, and the optimal number of features is 100. Differences between prediction accuracy of machine learning models are small, but overall, Bayesian network performs the best, with overall AUC of 0.933 and overall accuracy of 84%.","PeriodicalId":405827,"journal":{"name":"2017 2nd International Conference on Information Technology (INCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Information Technology (INCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCIT.2017.8257854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents scale-invariant shape analysis with respect to banana cultivar detection. We consider three cultivars: Cavendish, Lady Finger, and Pisang Awak. We present the appropriate image preprocessing methods and compare different feature selection algorithms, numbers of features, as well as various machine learning models as the classifier. We found that the best feature selection method is chi square, and the optimal number of features is 100. Differences between prediction accuracy of machine learning models are small, but overall, Bayesian network performs the best, with overall AUC of 0.933 and overall accuracy of 84%.
基于尺度不变形状分析的香蕉品种分类
本文提出了香蕉品种检测中的尺度不变形状分析方法。我们考虑了三个品种:卡文迪什、Lady Finger和Pisang Awak。我们提出了适当的图像预处理方法,并比较了不同的特征选择算法,特征数量,以及各种机器学习模型作为分类器。我们发现最好的特征选择方法是卡方,最优特征个数为100。机器学习模型的预测精度差异不大,但总体而言,贝叶斯网络表现最好,总体AUC为0.933,总体准确率为84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信