Giulia Pazzaglia, M. Mameli, E. Frontoni, P. Zingaretti, Rocco Pietrini, Davide Manco, V. Placidi
{"title":"A Deep Learning Approach for Product Detection in Intelligent Retail Environment","authors":"Giulia Pazzaglia, M. Mameli, E. Frontoni, P. Zingaretti, Rocco Pietrini, Davide Manco, V. Placidi","doi":"10.1115/detc2021-71462","DOIUrl":null,"url":null,"abstract":"\n A planogram is the graphical representation of the way a given number of products are positioned within the shelves in a store. The creation of a correct planogram is a fundamental tool for a store’s performance: it helps to increase sales and achieve maximum customer satisfaction by reducing out-of-stocks. To this end, this work aims to provide an automatic object recognition based system that allows the operator to verify the correctness of a planogram. For image acquisition, either low-cost battery-powered cameras positioned on the opposite side of the shelf or simply a tablet with a dedicated app can be used. These tools are connected to the cloud where the detection and matching phases are performed. The experimental results come from a real environment.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A planogram is the graphical representation of the way a given number of products are positioned within the shelves in a store. The creation of a correct planogram is a fundamental tool for a store’s performance: it helps to increase sales and achieve maximum customer satisfaction by reducing out-of-stocks. To this end, this work aims to provide an automatic object recognition based system that allows the operator to verify the correctness of a planogram. For image acquisition, either low-cost battery-powered cameras positioned on the opposite side of the shelf or simply a tablet with a dedicated app can be used. These tools are connected to the cloud where the detection and matching phases are performed. The experimental results come from a real environment.