Forward-looking super-resolution radar imaging via reweighted L1-minimization

Hyukjung Lee, J. Chun, Sungchan Song
{"title":"Forward-looking super-resolution radar imaging via reweighted L1-minimization","authors":"Hyukjung Lee, J. Chun, Sungchan Song","doi":"10.1109/RADAR.2018.8378601","DOIUrl":null,"url":null,"abstract":"A forward-looking scanning radar with a real aperture requires sharp beam width to achieve high cross-range resolution. Also, range resolution is limited by the bandwidth of the transmitted signal. We propose a method for yielding a 2D super-resolution radar image by reweighted ℓ1-minimization. Assuming reflectivity distribution of the frontal ground is sparse, — when there only exists dominant scattering points on the ground — imaging problem can be cast to compressive sensing framework so that the super-resolution radar image can be obtained. The super-resolution imaging radar can be adopted as a seeker for the frontal ground surveillance.","PeriodicalId":379567,"journal":{"name":"2018 IEEE Radar Conference (RadarConf18)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radar Conference (RadarConf18)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2018.8378601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A forward-looking scanning radar with a real aperture requires sharp beam width to achieve high cross-range resolution. Also, range resolution is limited by the bandwidth of the transmitted signal. We propose a method for yielding a 2D super-resolution radar image by reweighted ℓ1-minimization. Assuming reflectivity distribution of the frontal ground is sparse, — when there only exists dominant scattering points on the ground — imaging problem can be cast to compressive sensing framework so that the super-resolution radar image can be obtained. The super-resolution imaging radar can be adopted as a seeker for the frontal ground surveillance.
前视超分辨率雷达成像通过重新加权l1最小化
具有真实孔径的前视扫描雷达需要较宽的波束宽度以获得较高的跨距离分辨率。此外,距离分辨率受传输信号带宽的限制。提出了一种利用加权最小化法生成二维超分辨率雷达图像的方法。假设锋面地面的反射率分布是稀疏的,当地面只存在优势散射点时,可以将成像问题转化为压缩感知框架,从而获得超分辨率雷达图像。超分辨率成像雷达可作为前方地面监视的导引头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信